These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 22114319)
1. The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. Halbach F; Rode M; Conti E RNA; 2012 Jan; 18(1):124-34. PubMed ID: 22114319 [TBL] [Abstract][Full Text] [Related]
2. Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. Falk S; Tants JN; Basquin J; Thoms M; Hurt E; Sattler M; Conti E RNA; 2017 Dec; 23(12):1780-1787. PubMed ID: 28883156 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Weir JR; Bonneau F; Hentschel J; Conti E Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12139-44. PubMed ID: 20566885 [TBL] [Abstract][Full Text] [Related]
4. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. Jackson RN; Klauer AA; Hintze BJ; Robinson H; van Hoof A; Johnson SJ EMBO J; 2010 Jul; 29(13):2205-16. PubMed ID: 20512111 [TBL] [Abstract][Full Text] [Related]
5. The yeast ski complex: crystal structure and RNA channeling to the exosome complex. Halbach F; Reichelt P; Rode M; Conti E Cell; 2013 Aug; 154(4):814-26. PubMed ID: 23953113 [TBL] [Abstract][Full Text] [Related]
6. Conserved Residues at the Mtr4 C-Terminus Coordinate Helicase Activity and Exosome Interactions. Yim MK; Stuart CJ; Pond MI; van Hoof A; Johnson SJ Biochemistry; 2024 Jan; 63(1):159-170. PubMed ID: 38085597 [TBL] [Abstract][Full Text] [Related]
7. Genetic interactions suggest multiple distinct roles of the arch and core helicase domains of Mtr4 in Rrp6 and exosome function. Klauer AA; van Hoof A Nucleic Acids Res; 2013 Jan; 41(1):533-41. PubMed ID: 23143101 [TBL] [Abstract][Full Text] [Related]
8. Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. Wasmuth EV; Zinder JC; Zattas D; Das M; Lima CD Elife; 2017 Jul; 6():. PubMed ID: 28742025 [TBL] [Abstract][Full Text] [Related]
9. The Mtr4 ratchet helix and arch domain both function to promote RNA unwinding. Taylor LL; Jackson RN; Rexhepaj M; King AK; Lott LK; van Hoof A; Johnson SJ Nucleic Acids Res; 2014 Dec; 42(22):13861-72. PubMed ID: 25414331 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for MTR4-ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex. Puno MR; Lima CD Proc Natl Acad Sci U S A; 2018 Jun; 115(24):E5506-E5515. PubMed ID: 29844170 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen-deuterium exchange mass spectrometry of Mtr4 with diverse RNAs reveals substrate-dependent dynamics and interfaces in the arch. Zhang N; Olsen KJ; Ball D; Johnson SJ; D'Arcy S Nucleic Acids Res; 2022 Apr; 50(7):4042-4053. PubMed ID: 35380691 [TBL] [Abstract][Full Text] [Related]
12. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro. Li Y; Burclaff J; Anderson JT PLoS One; 2016; 11(1):e0148090. PubMed ID: 26820724 [TBL] [Abstract][Full Text] [Related]
13. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. Schuch B; Feigenbutz M; Makino DL; Falk S; Basquin C; Mitchell P; Conti E EMBO J; 2014 Dec; 33(23):2829-46. PubMed ID: 25319414 [TBL] [Abstract][Full Text] [Related]
14. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866 [TBL] [Abstract][Full Text] [Related]
16. The cryo-EM structure of a ribosome-Ski2-Ski3-Ski8 helicase complex. Schmidt C; Kowalinski E; Shanmuganathan V; Defenouillère Q; Braunger K; Heuer A; Pech M; Namane A; Berninghausen O; Fromont-Racine M; Jacquier A; Conti E; Becker T; Beckmann R Science; 2016 Dec; 354(6318):1431-1433. PubMed ID: 27980209 [TBL] [Abstract][Full Text] [Related]
17. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. Walbott H; Mouffok S; Capeyrou R; Lebaron S; Humbert O; van Tilbeurgh H; Henry Y; Leulliot N EMBO J; 2010 Jul; 29(13):2194-204. PubMed ID: 20512115 [TBL] [Abstract][Full Text] [Related]
18. Purification and Reconstitution of the S. cerevisiae TRAMP and Ski Complexes for Biochemical and Structural Studies. Keidel A; Conti E; Falk S Methods Mol Biol; 2020; 2062():491-513. PubMed ID: 31768992 [TBL] [Abstract][Full Text] [Related]
19. Structure of the DEAH/RHA ATPase Prp43p bound to RNA implicates a pair of hairpins and motif Va in translocation along RNA. He Y; Staley JP; Andersen GR; Nielsen KH RNA; 2017 Jul; 23(7):1110-1124. PubMed ID: 28416566 [TBL] [Abstract][Full Text] [Related]
20. The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins. Thoms M; Thomson E; Baßler J; Gnädig M; Griesel S; Hurt E Cell; 2015 Aug; 162(5):1029-38. PubMed ID: 26317469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]