These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 22114478)
1. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Liu J; Zhang L; Yang Z; Zhao X Int J Nanomedicine; 2011; 6():2143-53. PubMed ID: 22114478 [TBL] [Abstract][Full Text] [Related]
2. Study of the interaction between self-assembling peptide and mangiferin and in vitro release of mangiferin from in situ hydrogel. Meng C; Wei W; Wang Y; Zhang K; Zhang T; Tang Y; Tang F Int J Nanomedicine; 2019; 14():7447-7460. PubMed ID: 31686816 [TBL] [Abstract][Full Text] [Related]
3. The interaction between self - assembling peptides and emodin and the controlled release of emodin from Wei W; Meng C; Wang Y; Huang Y; Du W; Li H; Liu Y; Song H; Tang F Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3961-3975. PubMed ID: 31588802 [TBL] [Abstract][Full Text] [Related]
4. Experimental anti-tumor effect of emodin in suspension - Wei W; Tang J; Hu L; Feng Y; Li H; Yin C; Tang F Drug Deliv; 2021 Dec; 28(1):1810-1821. PubMed ID: 34470553 [TBL] [Abstract][Full Text] [Related]
5. A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs. Sun L; Zhao X Int J Nanomedicine; 2012; 7():571-80. PubMed ID: 22346352 [TBL] [Abstract][Full Text] [Related]
6. Antitumor Effects of Self-Assembling Peptide-Emodin in situ Hydrogels in vitro and in vivo. Wei W; Tang J; Li H; Huang Y; Yin C; Li D; Tang F Int J Nanomedicine; 2021; 16():47-60. PubMed ID: 33442249 [TBL] [Abstract][Full Text] [Related]
7. A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel. Hu H; Lin Z; He B; Dai W; Wang X; Wang J; Zhang X; Zhang H; Zhang Q J Control Release; 2015 Dec; 220(Pt A):189-200. PubMed ID: 26474677 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular hydrogel based on high-solid-content mPECT nanoparticles and cyclodextrins for local and sustained drug delivery. Yin L; Xu S; Feng Z; Deng H; Zhang J; Gao H; Deng L; Tang H; Dong A Biomater Sci; 2017 Mar; 5(4):698-706. PubMed ID: 28184404 [TBL] [Abstract][Full Text] [Related]
9. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Raza F; Zhu Y; Chen L; You X; Zhang J; Khan A; Khan MW; Hasnat M; Zafar H; Wu J; Ge L Biomater Sci; 2019 Apr; 7(5):2023-2036. PubMed ID: 30839983 [TBL] [Abstract][Full Text] [Related]
10. Sustained release of PTX-incorporated nanoparticles synergized by burst release of DOX⋅HCl from thermosensitive modified PEG/PCL hydrogel to improve anti-tumor efficiency. Xu S; Wang W; Li X; Liu J; Dong A; Deng L Eur J Pharm Sci; 2014 Oct; 62():267-73. PubMed ID: 24931190 [TBL] [Abstract][Full Text] [Related]
11. Intraosseous Delivery of Bone Morphogenic Protein-2 Using a Self-Assembling Peptide Hydrogel. Phipps MC; Monte F; Mehta M; Kim HK Biomacromolecules; 2016 Jul; 17(7):2329-36. PubMed ID: 27285121 [TBL] [Abstract][Full Text] [Related]
12. pH and glutathion-responsive hydrogel for localized delivery of paclitaxel. Pérez E; Fernández A; Olmo R; Teijón JM; Blanco MD Colloids Surf B Biointerfaces; 2014 Apr; 116():247-56. PubMed ID: 24491841 [TBL] [Abstract][Full Text] [Related]
13. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Gong C; Wang C; Wang Y; Wu Q; Zhang D; Luo F; Qian Z Nanoscale; 2012 May; 4(10):3095-104. PubMed ID: 22535210 [TBL] [Abstract][Full Text] [Related]
14. Self-Assembly of Succinated Paclitaxel into Supramolecular Hydrogel for Local Cancer Chemotherapy. Song Q; Zhang R; Lei L; Li X J Biomed Nanotechnol; 2018 Aug; 14(8):1471-1476. PubMed ID: 29903061 [TBL] [Abstract][Full Text] [Related]
15. Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering. Chakroun RW; Wang F; Lin R; Wang Y; Su H; Pompa D; Cui H ACS Nano; 2019 Jul; 13(7):7780-7790. PubMed ID: 31117370 [TBL] [Abstract][Full Text] [Related]
16. l-Peptide functionalized dual-responsive nanoparticles for controlled paclitaxel release and enhanced apoptosis in breast cancer cells. Niu S; Bremner DH; Wu J; Wu J; Wang H; Li H; Qian Q; Zheng H; Zhu L Drug Deliv; 2018 Nov; 25(1):1275-1288. PubMed ID: 29847177 [TBL] [Abstract][Full Text] [Related]
17. Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds. Zhou A; Chen S; He B; Zhao W; Chen X; Jiang D Drug Des Devel Ther; 2016; 10():3043-3051. PubMed ID: 27703332 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Xiang J; Wu B; Zhou Z; Hu S; Piao Y; Zhou Q; Wang G; Tang J; Liu X; Shen Y Sci China Life Sci; 2018 Apr; 61(4):436-447. PubMed ID: 29572777 [TBL] [Abstract][Full Text] [Related]
19. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. Lin Z; Gao W; Hu H; Ma K; He B; Dai W; Wang X; Wang J; Zhang X; Zhang Q J Control Release; 2014 Jan; 174():161-70. PubMed ID: 24512789 [TBL] [Abstract][Full Text] [Related]
20. Stereocomplex micelle loaded with paclitaxel for enhanced therapy of breast cancer in an orthotopic mouse model. Piao L; Li Y; Zhang H; Jiang J J Biomater Sci Polym Ed; 2019 Feb; 30(3):233-246. PubMed ID: 30606090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]