BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22114674)

  • 1. Crosstalk between ROS homeostasis and secondary metabolism in S. natalensis ATCC 27448: modulation of pimaricin production by intracellular ROS.
    Beites T; Pires SD; Santos CL; Osório H; Moradas-Ferreira P; Mendes MV
    PLoS One; 2011; 6(11):e27472. PubMed ID: 22114674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of the regulation of pimaricin production in Streptomyces natalensis by reactive oxygen species.
    Beites T; Rodríguez-García A; Santos-Beneit F; Moradas-Ferreira P; Aparicio JF; Mendes MV
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2231-41. PubMed ID: 24413916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes.
    Recio E; Aparicio JF; Rumbero Á; Martín JF
    Microbiology (Reading); 2006 Oct; 152(Pt 10):3147-3156. PubMed ID: 17005993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis.
    Recio E; Colinas A; Rumbero A; Aparicio JF; Martín JF
    J Biol Chem; 2004 Oct; 279(40):41586-93. PubMed ID: 15231842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis.
    Antón N; Santos-Aberturas J; Mendes MV; Guerra SM; Martín JF; Aparicio JF
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3174-3183. PubMed ID: 17768260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis.
    Mendes MV; Tunca S; Antón N; Recio E; Sola-Landa A; Aparicio JF; Martín JF
    Metab Eng; 2007 Mar; 9(2):217-27. PubMed ID: 17142079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis.
    Antón N; Mendes MV; Martín JF; Aparicio JF
    J Bacteriol; 2004 May; 186(9):2567-75. PubMed ID: 15090496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells.
    Domico LM; Cooper KR; Bernard LP; Zeevalk GD
    Neurotoxicology; 2007 Nov; 28(6):1079-91. PubMed ID: 17597214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2.
    Shen W; Wang D; Wei L; Zhang Y
    Appl Microbiol Biotechnol; 2020 May; 104(10):4471-4482. PubMed ID: 32221688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin.
    Mendes MV; Recio E; Antón N; Guerra SM; Santos-Aberturas J; Martín JF; Aparicio JF
    Chem Biol; 2007 Mar; 14(3):279-90. PubMed ID: 17379143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered biosynthesis of pimaricin derivatives with improved antifungal activity and reduced cytotoxicity.
    Qi Z; Kang Q; Jiang C; Han M; Bai L
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6745-52. PubMed ID: 25952111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient gene transfer system for the pimaricin producer Streptomyces natalensis.
    Enríquez LL; Mendes MV; Antón N; Tunca S; Guerra SM; Martín JF; Aparicio JF
    FEMS Microbiol Lett; 2006 Apr; 257(2):312-8. PubMed ID: 16553869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of the proteins expressed by hydrogen peroxide treated cultured human dermal microvascular endothelial cells.
    Ha MK; Chung KY; Bang D; Park YK; Lee KH
    Proteomics; 2005 Apr; 5(6):1507-19. PubMed ID: 15838903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical control on polyene macrolide biosynthesis: PimR modulates pimaricin production via the PAS-LuxR transcriptional activator PimM.
    Santos-Aberturas J; Vicente CM; Payero TD; Martín-Sánchez L; Cañibano C; Martín JF; Aparicio JF
    PLoS One; 2012; 7(6):e38536. PubMed ID: 22693644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aflatoxin biosynthesis is a novel source of reactive oxygen species--a potential redox signal to initiate resistance to oxidative stress?
    Roze LV; Laivenieks M; Hong SY; Wee J; Wong SS; Vanos B; Awad D; Ehrlich KC; Linz JE
    Toxins (Basel); 2015 Apr; 7(5):1411-30. PubMed ID: 25928133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of alternative NAD(P)H dehydrogenases leads to decreased mitochondrial ROS in Neurospora crassa.
    Carneiro P; Duarte M; Videira A
    Free Radic Biol Med; 2012 Jan; 52(2):402-9. PubMed ID: 22100504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.
    Dunning S; Ur Rehman A; Tiebosch MH; Hannivoort RA; Haijer FW; Woudenberg J; van den Heuvel FA; Buist-Homan M; Faber KN; Moshage H
    Biochim Biophys Acta; 2013 Dec; 1832(12):2027-34. PubMed ID: 23871839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response to different oxidants of Saccharomyces cerevisiae ure2Delta mutant.
    Todorova TT; Petrova VY; Vuilleumier S; Kujumdzieva AV
    Arch Microbiol; 2009 Nov; 191(11):837-45. PubMed ID: 19777209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis reveals KRIT1 as a modulator for the antioxidant effects of valproic acid in human bone-marrow mesenchymal stromal cells.
    Jung KH; Han DM; Jeong SG; Choi MR; Chai YG; Cho GW
    Drug Chem Toxicol; 2015; 38(3):286-92. PubMed ID: 25203678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox homeostasis of breast cancer lineages contributes to differential cell death response to exogenous hydrogen peroxide.
    Hecht F; Cazarin JM; Lima CE; Faria CC; Leitão AA; Ferreira AC; Carvalho DP; Fortunato RS
    Life Sci; 2016 Aug; 158():7-13. PubMed ID: 27328417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.