These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2211475)

  • 1. Sensitive streptavidin-biotin enzyme-linked immunosorbent assay for rapid screening of chloramphenicol residues in swine muscle tissue.
    van de Water C; Haagsma N
    J Assoc Off Anal Chem; 1990; 73(4):534-40. PubMed ID: 2211475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin-streptavidin-amplified system.
    Wang L; Zhang Y; Gao X; Duan Z; Wang S
    J Agric Food Chem; 2010 Mar; 58(6):3265-70. PubMed ID: 20192212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensitive immunoassay based on direct hapten coated format and biotin-streptavidin system for the detection of chloramphenicol.
    Sai N; Chen Y; Liu N; Yu G; Su P; Feng Y; Zhou Z; Liu X; Zhou H; Gao Z; Ning BA
    Talanta; 2010 Sep; 82(4):1113-21. PubMed ID: 20801306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive direct enzyme-linked immunosorbent assay for detection of sulfamethazine residues in swine urine and muscle tissue.
    Dixon-Holland DE; Katz SE
    J Assoc Off Anal Chem; 1988; 71(6):1137-40. PubMed ID: 3240969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an enzyme-linked immunosorbent assay for seven sulfonamide residues and investigation of matrix effects from different food samples.
    Zhang H; Wang L; Zhang Y; Fang G; Zheng W; Wang S
    J Agric Food Chem; 2007 Mar; 55(6):2079-84. PubMed ID: 17300200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enzyme-linked immunosorbent assay for the determination of chloramphenicol using a monoclonal antibody. Application to residues in swine muscle tissue.
    van de Water C; Haagsma N; van Kooten PJ; van Eden W
    Z Lebensm Unters Forsch; 1987 Sep; 185(3):202-7. PubMed ID: 3439345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Optimization of a method of solid-phase immunoenzyme analysis for determination of chloramphenicol in milk].
    Kolosova AIu; Samsonova ZhV; Egorov AM; Shevaleva SA; Orlova NG; Kiseleva TV; Khotimchenko SA; Tutel'ian VA
    Vopr Pitan; 1999; 68(1):23-7. PubMed ID: 10198960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloramphenicol residues in chicken liver, kidney and muscle: a comparison among the antibacterial residues monitoring methods of Four Plate Test, ELISA and HPLC.
    Tajik H; Malekinejad H; Razavi-Rouhani SM; Pajouhi MR; Mahmoudi R; Haghnazari A
    Food Chem Toxicol; 2010; 48(8-9):2464-8. PubMed ID: 20600543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serologic detection of Actinobacillus pleuropneumoniae in swine by capsular polysaccharide-biotin-streptavidin enzyme-linked immunosorbent assay.
    Inzana TJ; Fenwick B
    J Clin Microbiol; 2001 Apr; 39(4):1279-82. PubMed ID: 11283041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an indirect competitive ELISA for the detection of furazolidone marker residue in animal edible tissues.
    Chang C; Peng DP; Wu JE; Wang YL; Yuan ZH
    J Agric Food Chem; 2008 Mar; 56(5):1525-31. PubMed ID: 18260630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a homogeneous immunoassay based on the AlphaLISA method for the detection of chloramphenicol in milk, honey and eggs.
    Zhang Y; Huang B; Zhang J; Wang K; Jin J
    J Sci Food Agric; 2012 Jul; 92(9):1944-7. PubMed ID: 22234784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of marbofloxacin residues in beef and pork with an enzyme-linked immunosorbent assay.
    Sheng W; Xia X; Wei K; Li J; Li QX; Xu T
    J Agric Food Chem; 2009 Jul; 57(13):5971-5. PubMed ID: 19522498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of an enzyme-linked immunosorbent assay screening for quinolones in egg, poultry muscle and feed samples.
    Scortichini G; Annunziata L; Di Girolamo V; Buratti R; Galarini R
    Anal Chim Acta; 2009 Apr; 637(1-2):273-8. PubMed ID: 19286040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depletion of chloramphenicol in trout after a hypothetic therapeutic treatment.
    Biancotto G; Contiero L; Benetti C; Calligaris M; Tibaldi E; Cerni L; Francese M
    Anal Chim Acta; 2009 Apr; 637(1-2):173-7. PubMed ID: 19286026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of chloramphenicol residues in swine tissues and milk: comparative study using different screening and quantitative methods.
    van de Water C; Haagsma N
    J Chromatogr; 1991 May; 566(1):173-85. PubMed ID: 1885709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and sensitive enzyme-linked immunosorbent assay and immunochromatographic assay for the detection of chlortetracycline residues in edible animal tissues.
    Le T; Yi SH; Zhao ZW; Wei W
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Nov; 28(11):1516-23. PubMed ID: 21793687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid chromatographic determination of chloramphenicol residues in meat: interlaboratory study.
    Aerts RM; Keukens HJ; Werdmuller GA
    J Assoc Off Anal Chem; 1989; 72(4):570-6. PubMed ID: 2759988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of chloramphenicol in swine muscle tissue using a monoclonal antibody-mediated clean-up procedure.
    van de Water C; Haagsma N
    J Chromatogr; 1987 Dec; 411():415-21. PubMed ID: 3443630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive immunoassay by capillary electrophoresis with laser-induced fluorescence for the trace detection of chloramphenicol in animal-derived foods.
    Zhang C; Wang S; Fang G; Zhang Y; Jiang L
    Electrophoresis; 2008 Aug; 29(16):3422-8. PubMed ID: 18633946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on the determination of chloramphenicol residues in muscles and viscera of the livestock and poultry and in the shrimp].
    Yang D; Jiang D; Wang Z; Fang C
    Wei Sheng Yan Jiu; 2004 Mar; 33(2):198-201. PubMed ID: 15209005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.