BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22114948)

  • 1. Molecular mechanisms of glycine transporter GlyT2 mutations in startle disease.
    James VM; Gill JL; Topf M; Harvey RJ
    Biol Chem; 2012 Apr; 393(4):283-9. PubMed ID: 22114948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease.
    Rees MI; Harvey K; Pearce BR; Chung SK; Duguid IC; Thomas P; Beatty S; Graham GE; Armstrong L; Shiang R; Abbott KJ; Zuberi SM; Stephenson JB; Owen MJ; Tijssen MA; van den Maagdenberg AM; Smart TG; Supplisson S; Harvey RJ
    Nat Genet; 2006 Jul; 38(7):801-6. PubMed ID: 16751771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Startle disease in Irish wolfhounds associated with a microdeletion in the glycine transporter GlyT2 gene.
    Gill JL; Capper D; Vanbellinghen JF; Chung SK; Higgins RJ; Rees MI; Shelton GD; Harvey RJ
    Neurobiol Dis; 2011 Jul; 43(1):184-9. PubMed ID: 21420493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease.
    Carta E; Chung SK; James VM; Robinson A; Gill JL; Remy N; Vanbellinghen JF; Drew CJ; Cagdas S; Cameron D; Cowan FM; Del Toro M; Graham GE; Manzur AY; Masri A; Rivera S; Scalais E; Shiang R; Sinclair K; Stuart CA; Tijssen MA; Wise G; Zuberi SM; Harvey K; Pearce BR; Topf M; Thomas RH; Supplisson S; Rees MI; Harvey RJ
    J Biol Chem; 2012 Aug; 287(34):28975-85. PubMed ID: 22700964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GLRB is the third major gene of effect in hyperekplexia.
    Chung SK; Bode A; Cushion TD; Thomas RH; Hunt C; Wood SE; Pickrell WO; Drew CJ; Yamashita S; Shiang R; Leiz S; Longardt AC; Raile V; Weschke B; Puri RD; Verma IC; Harvey RJ; Ratnasinghe DD; Parker M; Rittey C; Masri A; Lingappa L; Howell OW; Vanbellinghen JF; Mullins JG; Lynch JW; Rees MI
    Hum Mol Genet; 2013 Mar; 22(5):927-40. PubMed ID: 23184146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glycinergic system in human startle disease: a genetic screening approach.
    Davies JS; Chung SK; Thomas RH; Robinson A; Hammond CL; Mullins JG; Carta E; Pearce BR; Harvey K; Harvey RJ; Rees MI
    Front Mol Neurosci; 2010; 3():8. PubMed ID: 20407582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2.
    Giménez C; Pérez-Siles G; Martínez-Villarreal J; Arribas-González E; Jiménez E; Núñez E; de Juan-Sanz J; Fernández-Sánchez E; García-Tardón N; Ibáñez I; Romanelli V; Nevado J; James VM; Topf M; Chung SK; Thomas RH; Desviat LR; Aragón C; Zafra F; Rees MI; Lapunzina P; Harvey RJ; López-Corcuera B
    J Biol Chem; 2012 Aug; 287(34):28986-9002. PubMed ID: 22753417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia.
    Eulenburg V; Becker K; Gomeza J; Schmitt B; Becker CM; Betz H
    Biochem Biophys Res Commun; 2006 Sep; 348(2):400-5. PubMed ID: 16884688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of the dominant negative effect of a glycine transporter 2 mutation associated with hyperekplexia.
    Arribas-González E; de Juan-Sanz J; Aragón C; López-Corcuera B
    J Biol Chem; 2015 Jan; 290(4):2150-65. PubMed ID: 25480793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperekplexia-associated mutations in the neuronal glycine transporter 2.
    López-Corcuera B; Arribas-González E; Aragón C
    Neurochem Int; 2019 Feb; 123():95-100. PubMed ID: 29859229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia.
    Chung SK; Vanbellinghen JF; Mullins JG; Robinson A; Hantke J; Hammond CL; Gilbert DF; Freilinger M; Ryan M; Kruer MC; Masri A; Gurses C; Ferrie C; Harvey K; Shiang R; Christodoulou J; Andermann F; Andermann E; Thomas RH; Harvey RJ; Lynch JW; Rees MI
    J Neurosci; 2010 Jul; 30(28):9612-20. PubMed ID: 20631190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genetics of hyperekplexia: more than startle!
    Harvey RJ; Topf M; Harvey K; Rees MI
    Trends Genet; 2008 Sep; 24(9):439-47. PubMed ID: 18707791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct phenotypes in zebrafish models of human startle disease.
    Ganser LR; Yan Q; James VM; Kozol R; Topf M; Harvey RJ; Dallman JE
    Neurobiol Dis; 2013 Dec; 60():139-51. PubMed ID: 24029548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel missense mutations in the glycine receptor β subunit gene (GLRB) in startle disease.
    James VM; Bode A; Chung SK; Gill JL; Nielsen M; Cowan FM; Vujic M; Thomas RH; Rees MI; Harvey K; Keramidas A; Topf M; Ginjaar I; Lynch JW; Harvey RJ
    Neurobiol Dis; 2013 Apr; 52():137-49. PubMed ID: 23238346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical role for glycine transporters in hyperexcitability disorders.
    Harvey RJ; Carta E; Pearce BR; Chung SK; Supplisson S; Rees MI; Harvey K
    Front Mol Neurosci; 2008; 1():1. PubMed ID: 18946534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotype-phenotype correlations in hyperekplexia: apnoeas, learning difficulties and speech delay.
    Thomas RH; Chung SK; Wood SE; Cushion TD; Drew CJ; Hammond CL; Vanbellinghen JF; Mullins JG; Rees MI
    Brain; 2013 Oct; 136(Pt 10):3085-95. PubMed ID: 24030948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical features and genetic analysis of children with hyperekplexia in Korea.
    Lee CG; Kwon MJ; Yu HJ; Nam SH; Lee J; Ki CS; Lee M
    J Child Neurol; 2013 Jan; 28(1):90-4. PubMed ID: 22532536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescue of two trafficking-defective variants of the neuronal glycine transporter GlyT2 associated to hyperekplexia.
    de la Rocha-Muñoz A; Melgarejo E; Aragón C; López-Corcuera B
    Neuropharmacology; 2021 May; 189():108543. PubMed ID: 33794243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons.
    Rousseau F; Aubrey KR; Supplisson S
    J Neurosci; 2008 Sep; 28(39):9755-68. PubMed ID: 18815261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the Glycine Receptor β Subunit in Synaptic Localization and Pathogenicity in Severe Startle Disease.
    Wiessler AL; Hasenmüller AS; Fuhl I; Mille C; Cortes Campo O; Reinhard N; Schenk J; Heinze KG; Schaefer N; Specht CG; Villmann C
    J Neurosci; 2024 Jan; 44(2):. PubMed ID: 37963764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.