These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2211506)

  • 1. Regulation of fructose metabolism and polymer synthesis by Fusobacterium nucleatum ATCC 10953.
    Robrish SA; Thompson J
    J Bacteriol; 1990 Oct; 172(10):5714-23. PubMed ID: 2211506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid-dependent transport of sugars by Fusobacterium nucleatum ATCC 10953.
    Robrish SA; Oliver C; Thompson J
    J Bacteriol; 1987 Sep; 169(9):3891-7. PubMed ID: 3114229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar metabolism by fusobacteria: regulation of transport, phosphorylation, and polymer formation by Fusobacterium mortiferum ATCC 25557.
    Robrish SA; Oliver C; Thompson J
    Infect Immun; 1991 Dec; 59(12):4547-54. PubMed ID: 1937813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspects of the growth and metabolism of Fusobacterium nucleatum ATCC 10953 in continuous culture.
    Rogers AH; Zilm PS; Gully NJ; Pfennig AL; Marsh PD
    Oral Microbiol Immunol; 1991 Aug; 6(4):250-5. PubMed ID: 1812468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in growth and polyglucose synthesis in response to fructose metabolism by Fusobacterium nucleatum grown in continuous culture.
    Zilm PS; Gully NJ; Rogers AH
    Oral Microbiol Immunol; 2003 Aug; 18(4):260-2. PubMed ID: 12823803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial actions of benzimidazoles against the oral anaerobes Fusobacterium nucleatum and Prevotella intermedia.
    Sheng J; Nguyen PT; Baldeck JD; Olsson J; Marquis RE
    Arch Oral Biol; 2006 Nov; 51(11):1015-23. PubMed ID: 16806047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoenolpyruvate-dependent maltose:phosphotransferase activity in Fusobacterium mortiferum ATCC 25557: specificity, inducibility, and product analysis.
    Robrish SA; Fales HM; Gentry-Weeks C; Thompson J
    J Bacteriol; 1994 Jun; 176(11):3250-6. PubMed ID: 8195080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C nuclear magnetic resonance and gas chromatography-mass spectrometry studies of carbon metabolism in the actinomycin D producer Streptomyces parvulus by use of 13C-labeled precursors.
    Inbar L; Lapidot A
    J Bacteriol; 1991 Dec; 173(24):7790-801. PubMed ID: 1744035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways of glutamate catabolism among Fusobacterium species.
    Gharbia SE; Shah HN
    J Gen Microbiol; 1991 May; 137(5):1201-6. PubMed ID: 1678005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus.
    Johnsen U; Selig M; Xavier KB; Santos H; Schönheit P
    Arch Microbiol; 2001 Jan; 175(1):52-61. PubMed ID: 11271421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth pH and transient increases in amino acid availability influence polyglucose synthesis by Fusobacterium nucleatum grown in continuous culture.
    Zilm PS; Gully NJ; Rogers AH
    FEMS Microbiol Lett; 2002 Oct; 215(2):203-8. PubMed ID: 12399036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the carbohydrate source on beta-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6.
    Velasco SE; Yebra MJ; Monedero V; Ibarburu I; Dueñas MT; Irastorza A
    Int J Food Microbiol; 2007 Apr; 115(3):325-34. PubMed ID: 17303279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-target antimicrobial actions of zinc against oral anaerobes.
    Sheng J; Nguyen PT; Marquis RE
    Arch Oral Biol; 2005 Aug; 50(8):747-57. PubMed ID: 15958206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable-isotope studies of glutamate catabolism in Fusobacterium nucleatum.
    White RL; Ramezani M; Gharbia SE; Seth R; Doherty-Kirby AL; Shah HN
    Biotechnol Appl Biochem; 1995 Dec; 22(3):385-96. PubMed ID: 8573293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway of lysine degradation in Fusobacterium nucleatum.
    Barker HA; Kahn JM; Hedrick L
    J Bacteriol; 1982 Oct; 152(1):201-7. PubMed ID: 6811551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of amino acids and peptides by Fusobacterium nucleatum.
    Bakken V; Högh BT; Jensen HB
    Scand J Dent Res; 1989 Feb; 97(1):43-53. PubMed ID: 2565597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic investigation of glucose metabolism in the butyrate-producing gut anaerobe Fusobacterium varium.
    Potrykus J; Mahaney B; White RL; Bearne SL
    Proteomics; 2007 Jun; 7(11):1839-53. PubMed ID: 17464938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of Bifidobacterium longum ATCC 15707 fermentations: effect of the dilution rate and carbon source.
    Shene C; Mardones M; Zamora P; Bravo S
    Appl Microbiol Biotechnol; 2005 Jun; 67(5):623-30. PubMed ID: 15747118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sucrose fermentation by Fusobacterium mortiferum ATCC 25557: transport, catabolism, and products.
    Thompson J; Nguyen NY; Robrish SA
    J Bacteriol; 1992 May; 174(10):3227-35. PubMed ID: 1533618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry.
    Inbar L; Lapidot A
    J Bacteriol; 1988 Sep; 170(9):4055-64. PubMed ID: 3410824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.