These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2211506)

  • 21. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose.
    Liu D; Wang S; Xu B; Guo Y; Zhao J; Liu W; Sun Z; Shao C; Wei X; Jiang Z; Wang X; Liu F; Wang J; Huang L; Hu D; He X; Riedel CU; Yuan J
    Proteomics; 2011 Jul; 11(13):2628-38. PubMed ID: 21630463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutamate racemization and catabolism in Fusobacterium varium.
    Ramezani M; Resmer KL; White RL
    FEBS J; 2011 Jul; 278(14):2540-51. PubMed ID: 21575137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of sucrose and its five isomers by Fusobacterium mortiferum.
    Pikis A; Immel S; Robrish SA; Thompson J
    Microbiology (Reading); 2002 Mar; 148(Pt 3):843-852. PubMed ID: 11882720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes of liver metabolite concentrations in adults with disorders of fructose metabolism after intravenous fructose by 31P magnetic resonance spectroscopy.
    Boesiger P; Buchli R; Meier D; Steinmann B; Gitzelmann R
    Pediatr Res; 1994 Oct; 36(4):436-40. PubMed ID: 7816517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fructose and glucose mediates enterotoxin production and anaerobic metabolism of Bacillus cereus ATCC14579(T).
    Ouhib-Jacobs O; Lindley ND; Schmitt P; Clavel T
    J Appl Microbiol; 2009 Sep; 107(3):821-9. PubMed ID: 19302315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Glucose Consumption and Organic Acid Production by Engineered Corynebacterium glutamicum Based on Analysis of a pfkB1 Deletion Mutant.
    Hasegawa S; Tanaka Y; Suda M; Jojima T; Inui M
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27881414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fructose metabolism in the human erythrocyte. Phosphorylation to fructose 3-phosphate.
    Petersen A; Kappler F; Szwergold BS; Brown TR
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):363-6. PubMed ID: 1599419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fusobacterium polysaccharolyticum sp.nov., a gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch.
    van Gylswyk NO
    J Gen Microbiol; 1980 Jan; 116(1):157-63. PubMed ID: 7365452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic footprinting of the anaerobic bacterium Fusobacterium varium using 1H NMR spectroscopy.
    Resmer KL; White RL
    Mol Biosyst; 2011 Jul; 7(7):2220-7. PubMed ID: 21547305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine.
    Pasteris SE; Strasser de Saad AM
    J Agric Food Chem; 2009 May; 57(9):3853-8. PubMed ID: 19323470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological and functional adaptations of Fusobacterium nucleatum exposed to human neutrophil Peptide-1.
    Musrati AA; Fteita D; Paranko J; Könönen E; Gürsoy UK
    Anaerobe; 2016 Jun; 39():31-8. PubMed ID: 26923748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate.
    Rabkin M; Blum JJ
    Biochem J; 1985 Feb; 225(3):761-86. PubMed ID: 3919712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
    Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR
    J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the endogenous metabolism and senescence of starved Sarcina lutea.
    Burleigh IG; Dawes EA
    Biochem J; 1967 Jan; 102(1):236-50. PubMed ID: 6030287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compartmentation of glucose 6-phosphate in hepatocytes.
    Kalant N; Parniak M; Lemieux M
    Biochem J; 1987 Dec; 248(3):927-31. PubMed ID: 3435491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium.
    Potrykus J; White RL; Bearne SL
    Proteomics; 2008 Jul; 8(13):2691-703. PubMed ID: 18546150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and exopolysaccharide (EPS) production by Oenococcus oeni I4 and structural characterization of their EPSs.
    Ibarburu I; Soria-Díaz ME; Rodríguez-Carvajal MA; Velasco SE; Tejero-Mateo P; Gil-Serrano AM; Irastorza A; Dueñas MT
    J Appl Microbiol; 2007 Aug; 103(2):477-86. PubMed ID: 17650209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis.
    Saier MH; Ye JJ; Klinke S; Nino E
    J Bacteriol; 1996 Jan; 178(1):314-6. PubMed ID: 8550437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolism of D-[1-(13)C]fructose, D-[2-(13)C]fructose, and D-[6-(13)C]fructose in rat hepatocytes incubated in the presence of H(2)O or D(2)O.
    Malaisse WJ; Ladrière L; Verbruggen I; Willem R
    Mol Genet Metab; 2002 Feb; 75(2):162-7. PubMed ID: 11855935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significance of phosphoglucose isomerase for the shift between heterolactic and mannitol fermentation of fructose by Oenococcus oeni.
    Richter H; De Graaf AA; Hamann I; Unden G
    Arch Microbiol; 2003 Dec; 180(6):465-70. PubMed ID: 14608457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.