These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22115081)

  • 1. Loss of volatile hydrocarbons from an LNAPL oil source.
    Baedecker MJ; Eganhouse RP; Bekins BA; Delin GN
    J Contam Hydrol; 2011 Nov; 126(3-4):140-52. PubMed ID: 22115081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site.
    Essaid HI; Cozzarelli IM; Eganhouse RP; Herkelrath WN; Bekins BA; Delin GN
    J Contam Hydrol; 2003 Dec; 67(1-4):269-99. PubMed ID: 14607480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN.
    Ng GH; Bekins BA; Cozzarelli IM; Baedecker MJ; Bennett PC; Amos RT
    J Contam Hydrol; 2014 Aug; 164():1-15. PubMed ID: 24908586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid.
    Dobson R; Schroth MH; Zeyer J
    J Contam Hydrol; 2007 Dec; 94(3-4):235-48. PubMed ID: 17698242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills.
    Li Y; Xiong Y; Yang W; Xie Y; Li S; Sun Y
    Mar Pollut Bull; 2009 Jan; 58(1):114-7. PubMed ID: 18835611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weathering of Oil in a Surficial Aquifer.
    Baedecker MJ; Eganhouse RP; Qi H; Cozzarelli IM; Trost JJ; Bekins BA
    Ground Water; 2018 Sep; 56(5):797-809. PubMed ID: 29193024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crude oil at the bemidji site: 25 years of monitoring, modeling, and understanding.
    Essaid HI; Bekins BA; Herkelrath WN; Delin GN
    Ground Water; 2011; 49(5):706-26. PubMed ID: 20015222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer.
    Sihota NJ; Singurindy O; Mayer KU
    Environ Sci Technol; 2011 Jan; 45(2):482-8. PubMed ID: 21142178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
    Kim J; Corapcioglu MY
    J Contam Hydrol; 2003 Aug; 65(1-2):137-58. PubMed ID: 12855205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater.
    Cozzarelli IM; Bekins BA; Eganhouse RP; Warren E; Essaid HI
    J Contam Hydrol; 2010 Jan; 111(1-4):48-64. PubMed ID: 20060615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Documentation of time-scales for onset of natural attenuation in an aquifer treated by a crude-oil recovery system.
    Ponsin V; Maier J; Guelorget Y; Hunkeler D; Bouchard D; Villavicencio H; Höhener P
    Sci Total Environ; 2015 Apr; 512-513():62-73. PubMed ID: 25617779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Evolution of hydrocarbons and bacterial activity in the marine sediments contaminated by crude oil overflow and treated].
    Bodennec G; Desmarquest JP; Jensen B; Kantin R
    Int J Environ Anal Chem; 1987; 29(3):153-78. PubMed ID: 3596891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denatured ethanol release into gasoline residuals, Part 2: fate and transport.
    Freitas JG; Barker JF
    J Contam Hydrol; 2013 May; 148():79-91. PubMed ID: 23375213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scenario-based modelling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications.
    Vasudevan M; Nambi IM; Suresh Kumar G
    J Environ Manage; 2016 Jun; 175():9-19. PubMed ID: 27017268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation.
    Richnow HH; Annweiler E; Michaelis W; Meckenstock RU
    J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments.
    Tecon R; Beggah S; Czechowska K; Sentchilo V; Chronopoulou PM; McGenity TJ; van der Meer JR
    Environ Sci Technol; 2010 Feb; 44(3):1049-55. PubMed ID: 20000678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.
    Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O
    J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for calculating growth rates of petroleum hydrocarbon plumes.
    Bekins BA; Cozzarelli IM; Curtis GP
    Ground Water; 2005; 43(6):817-26. PubMed ID: 16324003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes.
    Amos RT; Bekins BA; Delin GN; Cozzarelli IM; Blowes DW; Kirshtein JD
    J Contam Hydrol; 2011 Jul; 125(1-4):13-25. PubMed ID: 21612840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.