BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22115084)

  • 1. Importance of heterocylic aromatic compounds in monitored natural attenuation for coal tar contaminated aquifers: A review.
    Blum P; Sagner A; Tiehm A; Martus P; Wendel T; Grathwohl P
    J Contam Hydrol; 2011 Nov; 126(3-4):181-94. PubMed ID: 22115084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial effects of dynamic groundwater flow and redox conditions on Natural Attenuation of mono-, poly-, and NSO-heterocyclic hydrocarbons.
    Salowsky H; Schäfer W; Schneider AL; Müller A; Dreher C; Tiehm A
    J Contam Hydrol; 2021 Dec; 243():103883. PubMed ID: 34479119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
    Thomson NR; Fraser MJ; Lamarche C; Barker JF; Forsey SP
    J Contam Hydrol; 2008 Nov; 102(1-2):154-71. PubMed ID: 18757111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field scale characterization and modeling of contaminant release from a coal tar source zone.
    D'Affonseca FM; Blum P; Finkel M; Melzer R; Grathwohl P
    J Contam Hydrol; 2008 Nov; 102(1-2):120-39. PubMed ID: 18538890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural attenuation of a plume from an emplaced coal tar creosote source over 14 years.
    Fraser M; Barker JF; Butler B; Blaine F; Joseph S; Cooke C
    J Contam Hydrol; 2008 Sep; 100(3-4):101-15. PubMed ID: 18692937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative assessment of coal tars obtained from 10 former manufactured gas plant sites in the eastern United States.
    Brown DG; Gupta L; Kim TH; Keith Moo-Young H; Coleman AJ
    Chemosphere; 2006 Nov; 65(9):1562-9. PubMed ID: 16698063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation.
    Alvarez PJ; Hunt CS
    Rev Latinoam Microbiol; 2002; 44(2):83-104. PubMed ID: 17063777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the multi-compound non-equilibrium dissolution behaviour of a coal tar containing PAHs and phenols into water.
    Tiruta-Barna L; Mahjoub B; Faure L; Hanna K; Bayard R; Gourdon R
    J Hazard Mater; 2006 May; 132(2-3):277-86. PubMed ID: 16431020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and attenuation of specific organic compounds in the groundwater plume at a former gasworks site.
    Zamfirescu D; Grathwohl P
    J Contam Hydrol; 2001 Dec; 53(3-4):407-27. PubMed ID: 11820480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport behaviour and natural attenuation of organic contaminants at spill sites.
    Schirmer M; Butler BJ
    Toxicology; 2004 Dec; 205(3):173-9. PubMed ID: 15464627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites.
    Baldwin BR; Nakatsu CH; Nies L
    Water Res; 2008 Feb; 42(3):723-31. PubMed ID: 17707876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating coal tar-water partitioning coefficient estimation methods and solute-solvent molecular interactions in tar phase.
    Endo S; Xu W; Goss KU; Schmidt TC
    Chemosphere; 2008 Sep; 73(4):532-8. PubMed ID: 18649918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four selected high molecular weight heterocyclic aromatic hydrocarbons: Ecotoxicological hazard assessment, environmental relevance and regulatory needs under REACH.
    Brendel S; Polleichtner C; Behnke A; Jessel S; Hassold E; Jennemann C; Einhenkel-Arle D; Seidel A
    Ecotoxicol Environ Saf; 2018 Nov; 163():340-348. PubMed ID: 30059878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolution and transport of coal tar compounds in fractured clay-rich residuum.
    Vulava VM; McKay LD; Broholm MM; McCarthy JF; Driese SG; Sayler GS
    J Hazard Mater; 2012 Feb; 203-204():283-9. PubMed ID: 22209208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of field-observed and model-predicted plume trends at fuel-contaminated sites: implications for natural attenuation rates.
    Jeong SW; Kampbell DH; An YJ; Henry BM
    J Environ Monit; 2005 Nov; 7(11):1099-104. PubMed ID: 16252060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ source zone sediment mixing coupled to groundwater biostimulation to enhance phenol natural attenuation.
    da Silva ML; Wendt MF; de Oliveira JC; Schneider MR
    Water Sci Technol; 2012; 66(1):130-7. PubMed ID: 22678209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of an enhanced PAH attenuation experiment and associated biogeochemical changes at a former gasworks site in southern Germany.
    Herold M; Greskowiak J; Ptak T; Prommer H
    J Contam Hydrol; 2011 Jan; 119(1-4):99-112. PubMed ID: 20947201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors controlling BTEX and chlorinated solvents plume length under natural attenuation conditions.
    Atteia O; Guillot C
    J Contam Hydrol; 2007 Feb; 90(1-2):81-104. PubMed ID: 17081653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterocyclic compounds: toxic effects using algae, daphnids, and the Salmonella/microsome test taking methodical quantitative aspects into account.
    Eisentraeger A; Brinkmann C; Hollert H; Sagner A; Tiehm A; Neuwoehner J
    Environ Toxicol Chem; 2008 Jul; 27(7):1590-6. PubMed ID: 18260688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.