These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22115090)

  • 1. Impact of dilution on the transport of poly(acrylic acid) supported magnetite nanoparticles in porous media.
    Ersenkal DA; Ziylan A; Ince NH; Acar HY; Demirer M; Copty NK
    J Contam Hydrol; 2011 Nov; 126(3-4):248-57. PubMed ID: 22115090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media.
    Hajdú A; Szekeres M; Tóth IY; Bauer RA; Mihály J; Zupkó I; Tombácz E
    Colloids Surf B Biointerfaces; 2012 Jun; 94():242-9. PubMed ID: 22366070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances.
    Kumar N; Labille J; Bossa N; Auffan M; Doumenq P; Rose J; Bottero JY
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9269-9277. PubMed ID: 28224341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S; Micić V; Hofmann T
    Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of residual polymer on nanoparticle deposition in porous media.
    Wang Y; Becker MD; Colvin VL; Abriola LM; Pennell KD
    Environ Sci Technol; 2014 Sep; 48(18):10664-71. PubMed ID: 25133851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria.
    Padwal P; Bandyopadhyaya R; Mehra S
    Langmuir; 2014 Dec; 30(50):15266-76. PubMed ID: 25375643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells.
    Yoon KY; Kotsmar C; Ingram DR; Huh C; Bryant SL; Milner TE; Johnston KP
    Langmuir; 2011 Sep; 27(17):10962-9. PubMed ID: 21728368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.
    Taghavy A; Pennell KD; Abriola LM
    J Contam Hydrol; 2015 Jan; 172():48-60. PubMed ID: 25437227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An image processing approach for investigation on transport of iron oxide nanoparticles (FE
    Golzar M; Azhdary Moghaddam M; Saghravani SF; Dahrazma B
    J Contam Hydrol; 2018 Apr; 211():77-84. PubMed ID: 29627132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.
    Lin YH; Tseng HH; Wey MY; Lin MD
    Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the factors affecting the photothermal therapy potential of small iron oxide nanoparticles over the 730-840 nm spectral region.
    Bilici K; Muti A; Demir Duman F; Sennaroğlu A; Yağcı Acar H
    Photochem Photobiol Sci; 2018 Nov; 17(11):1787-1793. PubMed ID: 30168556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport and Retention of Poly(Acrylic Acid-co-Maleic Acid) Coated Magnetite Nanoparticles in Porous Media: Effect of Input Concentration, Ionic Strength and Grain Size.
    Mlih R; Liang Y; Zhang M; Tombácz E; Bol R; Klumpp E
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designed polyelectrolyte shell on magnetite nanocore for dilution-resistant biocompatible magnetic fluids.
    Tóth IY; Illés E; Bauer RA; Nesztor D; Szekeres M; Zupkó I; Tombácz E
    Langmuir; 2012 Dec; 28(48):16638-46. PubMed ID: 23140279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Naja G; Ghoshal S
    J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on the interactions of proteins with polyampholyte-coated magnetite nanoparticles.
    Zhao T; Chen K; Gu H
    J Phys Chem B; 2013 Nov; 117(45):14129-35. PubMed ID: 24063374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters.
    Petosa AR; Ohl C; Rajput F; Tufenkji N
    Water Res; 2013 Oct; 47(15):5889-900. PubMed ID: 23916155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation.
    Laumann S; Micić V; Lowry GV; Hofmann T
    Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.