These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22115175)

  • 61. Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid.
    Tamogami S; Rakwal R; Kodama O
    FEBS Lett; 1997 Jul; 412(1):61-4. PubMed ID: 9257690
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine.
    Gruau C; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1117-29. PubMed ID: 26075828
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolic reprogramming in nodules, roots, and leaves of symbiotic soybean in response to iron deficiency.
    Chu Q; Sha Z; Maruyama H; Yang L; Pan G; Xue L; Watanabe T
    Plant Cell Environ; 2019 Nov; 42(11):3027-3043. PubMed ID: 31283836
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine.
    Verhagen BW; Trotel-Aziz P; Couderchet M; Höfte M; Aziz A
    J Exp Bot; 2010; 61(1):249-60. PubMed ID: 19812243
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Jasmonic Acid, Abscisic Acid, and Salicylic Acid Are Involved in the Phytoalexin Responses of Rice to Fusarium fujikuroi, a High Gibberellin Producer Pathogen.
    Siciliano I; Amaral Carneiro G; Spadaro D; Garibaldi A; Gullino ML
    J Agric Food Chem; 2015 Sep; 63(37):8134-42. PubMed ID: 26323788
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins.
    Yang T; Fang L; Sanders S; Jayanthi S; Rajan G; Podicheti R; Thallapuranam SK; Mockaitis K; Medina-Bolivar F
    J Biol Chem; 2018 Jan; 293(1):28-46. PubMed ID: 29158266
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The ascorbate peroxidase 1 regulates ascorbic acid metabolism in fresh-cut leaves of tea plant during postharvest storage under light/dark conditions.
    Li H; Liu JX; Wang Y; Zhuang J
    Plant Sci; 2020 Jul; 296():110500. PubMed ID: 32540018
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neuroprotective Secondary Metabolite Produced by an Endophytic Fungus, Neosartorya fischeri JS0553, Isolated from Glehnia littoralis.
    Bang S; Song JH; Lee D; Lee C; Kim S; Kang KS; Lee JH; Shim SH
    J Agric Food Chem; 2019 Feb; 67(7):1831-1838. PubMed ID: 30742443
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice.
    Duan L; Liu H; Li X; Xiao J; Wang S
    Physiol Plant; 2014 Nov; 152(3):486-500. PubMed ID: 24684436
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins.
    Schmelz EA; Huffaker A; Sims JW; Christensen SA; Lu X; Okada K; Peters RJ
    Plant J; 2014 Aug; 79(4):659-78. PubMed ID: 24450747
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of phytoalexins in plant protection.
    Hammerschmidt R; Dann EK
    Novartis Found Symp; 1999; 223():175-87; discussion 188-90. PubMed ID: 10549555
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis.
    Cho MH; Lee SW
    Int J Mol Sci; 2015 Dec; 16(12):29120-33. PubMed ID: 26690131
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Azelaic Acid-Induced Enzymes of Phenolic Defense in Pea Roots.
    Egorova AM; Tarchevsky IA
    Dokl Biochem Biophys; 2018 Sep; 482(1):252-254. PubMed ID: 30397886
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Metabolic changes in roots of the oilseed canola infected with the biotroph Plasmodiophora brassicae: phytoalexins and phytoanticipins.
    Pedras MS; Zheng QA; Strelkov S
    J Agric Food Chem; 2008 Nov; 56(21):9949-61. PubMed ID: 18834132
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii.
    Huang H; Gupta DK; Tian S; Yang XE; Li T
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1640-51. PubMed ID: 22146912
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The anti-phytoalexin gene Bx-cathepsin W supports the survival of Bursaphelenchus xylophilus under Pinus massoniana phytoalexin stress.
    Wang F; Chen Q; Zhang R; Li D; Ling Y; Song R
    BMC Genomics; 2019 Oct; 20(1):779. PubMed ID: 31655568
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Anti-inflammatory effects of Glehnia littoralis extract in acute and chronic cutaneous inflammation.
    Yoon T; Lee DY; Lee AY; Choi G; Choo BK; Kim HK
    Immunopharmacol Immunotoxicol; 2010 Dec; 32(4):663-70. PubMed ID: 20230179
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Maize WRKY Transcription Factor
    Gulzar F; Fu J; Zhu C; Yan J; Li X; Meraj TA; Shen Q; Hassan B; Wang Q
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576244
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cytosolic ascorbate peroxidase 1 modulates ascorbic acid metabolism through cooperating with nitrogen regulatory protein P-II in tea plant under nitrogen deficiency stress.
    Li H; Liu H; Wang Y; Teng RM; Liu J; Lin S; Zhuang J
    Genomics; 2020 Sep; 112(5):3497-3503. PubMed ID: 32562829
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Impaired defense reactions in apple replant disease-affected roots of Malus domestica 'M26'.
    Weiß S; Liu B; Reckwell D; Beerhues L; Winkelmann T
    Tree Physiol; 2017 Dec; 37(12):1672-1685. PubMed ID: 29036594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.