BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22115287)

  • 1. The effect of Pseudomonas NCIMB 2021 biofilm on AISI 316 stainless steel.
    Beech IB; Zinkevich V; Hanjangsit L; Gubner R; Avci R
    Biofouling; 2000; 15(1-3):3-12. PubMed ID: 22115287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of extracellular polymeric substances on the attachment of Pseudomonas NCIMB 2021 to AISI 304 and 316 stainless steel.
    Gubner R; Beech IB
    Biofouling; 2000; 15(1-3):25-36. PubMed ID: 22115289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy.
    Beech IB; Cheung CW; Johnson DB; Smith JR
    Biofouling; 1996; 10(1-3):65-77. PubMed ID: 22115103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.
    Schlisselberg DB; Yaron S
    Food Microbiol; 2013 Aug; 35(1):65-72. PubMed ID: 23628616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva.
    Huang HH
    J Biomed Mater Res A; 2003 Sep; 66(4):829-39. PubMed ID: 12926035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces.
    DeQueiroz GA; Day DF
    J Appl Microbiol; 2007 Oct; 103(4):794-802. PubMed ID: 17897181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of skeletal muscle proteins on corrosion of stainless steels].
    Rojas C; Lago ME
    Acta Cient Venez; 2002; 53(2):156-63. PubMed ID: 12516369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel.
    Javed MA; Stoddart PR; McArthur SL; Wade SA
    Biofouling; 2013 Sep; 29(8):939-52. PubMed ID: 23906317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of chlorines' impact on biofilms on scratched stainless steel surfaces.
    Lomander A; Schreuders P; Russek-Cohen E; Ali L
    Bioresour Technol; 2004 Sep; 94(3):275-83. PubMed ID: 15182834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion.
    Liu Z; Cui T; Chen Y; Dong Z
    Bioelectrochemistry; 2023 Aug; 152():108412. PubMed ID: 36934621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.
    Xu D; Xia J; Zhou E; Zhang D; Li H; Yang C; Li Q; Lin H; Li X; Yang K
    Bioelectrochemistry; 2017 Feb; 113():1-8. PubMed ID: 27578208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments.
    Videla HA
    Biofouling; 2000; 15(1-3):37-47. PubMed ID: 22115290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilm activity on corrosion of API 5L X65 steel weld bead.
    Liduino VS; Lutterbach MTS; Sérvulo EFC
    Colloids Surf B Biointerfaces; 2018 Dec; 172():43-50. PubMed ID: 30130636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes.
    Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN
    Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of beta 1-4 linked polymers in the biofilm structure of marine Pseudomonas sp. CE-2 on 304 stainless steel coupons.
    Jain A; Bhosle NB
    Biofouling; 2008; 24(4):283-90. PubMed ID: 18568666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms.
    Simões M; Simoes LC; Pereira MO; Vieira MJ
    Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A peptide-stainless steel reaction that yields a new bioorganic-metal state of matter.
    Davis EM; Li DY; Irvin RT
    Biomaterials; 2011 Aug; 32(23):5311-9. PubMed ID: 21550656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion.
    Arnold JW; Boothe DH; Suzuki O; Bailey GW
    J Microsc; 2004 Dec; 216(Pt 3):215-21. PubMed ID: 15566492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.