BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22115737)

  • 1. Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production.
    Driouch H; Melzer G; Wittmann C
    Metab Eng; 2012 Jan; 14(1):47-58. PubMed ID: 22115737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering cofactor metabolism for improved protein and glucoamylase production in Aspergillus niger.
    Sui YF; Schütze T; Ouyang LM; Lu H; Liu P; Xiao X; Qi J; Zhuang YP; Meyer V
    Microb Cell Fact; 2020 Oct; 19(1):198. PubMed ID: 33097040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties.
    Melzer G; Esfandabadi ME; Franco-Lara E; Wittmann C
    BMC Syst Biol; 2009 Dec; 3():120. PubMed ID: 20035624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger.
    Driouch H; Roth A; Dersch P; Wittmann C
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2011-24. PubMed ID: 20502893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger.
    R Poulsen B; Nøhr J; Douthwaite S; Hansen LV; Iversen JJ; Visser J; Ruijter GJ
    FEBS J; 2005 Mar; 272(6):1313-25. PubMed ID: 15752350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central carbon metabolism influences cellulase production in Bacillus licheniformis.
    Wang J; Liu S; Li Y; Wang H; Xiao S; Li C; Liu B
    Lett Appl Microbiol; 2018 Jan; 66(1):49-54. PubMed ID: 29063629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated isotope-assisted metabolomics and (13)C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger.
    Lu H; Liu X; Huang M; Xia J; Chu J; Zhuang Y; Zhang S; Noorman H
    Microb Cell Fact; 2015 Sep; 14():147. PubMed ID: 26383080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux analysis using stoichiometric models for Aspergillus niger: comparison under glucoamylase-producing and non-producing conditions.
    Melzer G; Dalpiaz A; Grote A; Kucklick M; Göcke Y; Jonas R; Dersch P; Franco-Lara E; Nörtemann B; Hempel DC
    J Biotechnol; 2007 Dec; 132(4):405-17. PubMed ID: 17931730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a direct cross-talk between malic enzyme and the pentose phosphate pathway via structural interactions.
    Yao P; Sun H; Xu C; Chen T; Zou B; Jiang P; Du W
    J Biol Chem; 2017 Oct; 292(41):17113-17120. PubMed ID: 28848047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic flux analysis for optimizing the specific growth rate of recombinant Aspergillus niger.
    Gheshlaghi R; Scharer JM; Moo-Young M; Douglas PL
    Bioprocess Biosyst Eng; 2007 Nov; 30(6):397-418. PubMed ID: 17629794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From nutritional wealth to autophagy: In vivo metabolic dynamics in the cytosol, mitochondrion and shuttles of IgG producing CHO cells.
    Junghans L; Teleki A; Wijaya AW; Becker M; Schweikert M; Takors R
    Metab Eng; 2019 Jul; 54():145-159. PubMed ID: 30930288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH-dependent 5-keto-D-gluconate reductase is a part of the fungal pathway for D-glucuronate catabolism.
    Kuivanen J; Richard P
    FEBS Lett; 2018 Jan; 592(1):71-77. PubMed ID: 29265364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger.
    Pedersen H; Christensen B; Hjort C; Nielsen J
    Metab Eng; 2000 Jan; 2(1):34-41. PubMed ID: 10935933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica.
    Wasylenko TM; Ahn WS; Stephanopoulos G
    Metab Eng; 2015 Jul; 30():27-39. PubMed ID: 25747307
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Wang L; Zhang H; Zhang Y; Song Y
    Microb Cell Fact; 2019 Sep; 18(1):154. PubMed ID: 31506101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive reconstruction and in silico analysis of Aspergillus niger genome-scale metabolic network model that accounts for 1210 ORFs.
    Lu H; Cao W; Ouyang L; Xia J; Huang M; Chu J; Zhuang Y; Zhang S; Noorman H
    Biotechnol Bioeng; 2017 Mar; 114(3):685-695. PubMed ID: 27696371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 2. Redirection of metabolic fluxes.
    Weber J; Hoffmann F; Rinas U
    Biotechnol Bioeng; 2002 Nov; 80(3):320-30. PubMed ID: 12226865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sandwiched-culture technique for evaluation of heterologous protein production in a filamentous fungus.
    Asgeirsdóttir SA; Scholtmeijer K; Wessels JG
    Appl Environ Microbiol; 1999 May; 65(5):2250-2. PubMed ID: 10224030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments.
    Moreira dos Santos M; Raghevendran V; Kötter P; Olsson L; Nielsen J
    Metab Eng; 2004 Oct; 6(4):352-63. PubMed ID: 15491864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Aspergillus niger for accelerated malic acid biosynthesis by improving NADPH availability.
    Wu N; Wu X; Zhang M; Zhang C; Xu Q
    Biotechnol J; 2024 May; 19(5):e2400014. PubMed ID: 38719614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.