These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22115841)

  • 101. Functionalized magnetic particles for water treatment.
    Baresel C; Schaller V; Jonasson C; Johansson C; Bordes R; Chauhan V; Sugunan A; Sommertune J; Welling S
    Heliyon; 2019 Aug; 5(8):e02325. PubMed ID: 31467994
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Some medical aspects of work in a metal refinery.
    MORGAN JG
    Med Press; 1947 Jul; 218(2):41-3. PubMed ID: 20254075
    [No Abstract]   [Full Text] [Related]  

  • 103. Earth resources.
    Skinner BJ
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4212-7. PubMed ID: 16592706
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Bitcoin and Potosí Silver: Historical Perspectives on Cryptocurrency.
    Zimmer Z
    Technol Cult; 2017; 58(2):307-334. PubMed ID: 28649110
    [TBL] [Abstract][Full Text] [Related]  

  • 105. The Precious Metals.
    Doroghazi RM
    Am J Cardiol; 2020 Mar; 125(5):827. PubMed ID: 31883681
    [No Abstract]   [Full Text] [Related]  

  • 106. Correction to: WEEE closed-loop supply chain network management considering the damage levels of returned products.
    Polat LO; Gungor A
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):7805. PubMed ID: 33275192
    [No Abstract]   [Full Text] [Related]  

  • 107. Selective Gold Precipitation by a Tertiary Diamide Driven by Thermodynamic Control.
    Vance SSM; Mojsak M; Kinsman LMM; Rae R; Kirk C; Love JB; Morrison CA
    Inorg Chem; 2024 May; 63(20):9332-9345. PubMed ID: 38722710
    [TBL] [Abstract][Full Text] [Related]  

  • 108. The Materials Science behind Sustainable Metals and Alloys.
    Raabe D
    Chem Rev; 2023 Mar; 123(5):2436-2608. PubMed ID: 36848879
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Selective Recovery of Gold from Electronic Waste by New Efficient Type of Sorbent.
    Wójcik G; Górska-Parat M; Hubicki Z; Zinkowska K
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769929
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Challenges and opportunities in the recovery of gold from electronic waste.
    Rao MD; Singh KK; Morrison CA; Love JB
    RSC Adv; 2020 Jan; 10(8):4300-4309. PubMed ID: 35495234
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Bioreduction of Gold Ions under Greener Conditions by the Thiol-Modified M13 Bacteriophage and with Hydroxylamine as the Autocatalytic Reducing Agent.
    Wei Z; Wei X; Zhao C; Zhang H; Zhang Z
    ACS Omega; 2022 Mar; 7(11):9951-9957. PubMed ID: 35350307
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Tuneable separation of gold by selective precipitation using a simple and recyclable diamide.
    Kinsman LMM; Ngwenya BT; Morrison CA; Love JB
    Nat Commun; 2021 Oct; 12(1):6258. PubMed ID: 34716348
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Dynamic estimation of future obsolete laptop flows and embedded critical raw materials: The case study of Greece.
    Kastanaki E; Giannis A
    Waste Manag; 2021 Aug; 132():74-85. PubMed ID: 34325330
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit.
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2021 Apr; 55(8):5485-5495. PubMed ID: 33783185
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Novel indicators to better monitor the collection and recovery of (critical) raw materials in WEEE: Focus on screens.
    Horta Arduin R; Mathieux F; Huisman J; Blengini GA; Charbuillet C; Wagner M; Baldé CP; Perry N
    Resour Conserv Recycl; 2020 Jun; 157():104772. PubMed ID: 32494109
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Life Cycle Analysis and Global Environmental Health Issues.
    Gohlke JM
    J Health Pollut; 2015 Dec; 5(9):1-2. PubMed ID: 30524770
    [No Abstract]   [Full Text] [Related]  

  • 117. Application of Life Cycle Assessment on Electronic Waste Management: A Review.
    Xue M; Xu Z
    Environ Manage; 2017 Apr; 59(4):693-707. PubMed ID: 28040829
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Metal recovery from high-grade WEEE: a life cycle assessment.
    Bigum M; Brogaard L; Christensen TH
    J Hazard Mater; 2012 Mar; 207-208():8-14. PubMed ID: 22115841
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.
    Oguchi M; Sakanakura H; Terazono A; Takigami H
    Waste Manag; 2012 Jan; 32(1):96-103. PubMed ID: 21963338
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant.
    Rocchetti L; Vegliò F; Kopacek B; Beolchini F
    Environ Sci Technol; 2013 Feb; 47(3):1581-8. PubMed ID: 23323842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.