These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2211612)

  • 1. Ribozymes correctly cleave a model substrate and endogenous RNA in vivo.
    Saxena SK; Ackerman EJ
    J Biol Chem; 1990 Oct; 265(28):17106-9. PubMed ID: 2211612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microinjected oligonucleotides complementary to the alpha-sarcin loop of 28 S RNA abolish protein synthesis in Xenopus oocytes.
    Saxena SK; Ackerman EJ
    J Biol Chem; 1990 Feb; 265(6):3263-9. PubMed ID: 2303449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-sarcin causes a specific cut in 28 S rRNA when microinjected into Xenopus oocytes.
    Ackerman EJ; Saxena SK; Ulbrich N
    J Biol Chem; 1988 Nov; 263(32):17076-83. PubMed ID: 3182833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cytotoxins alpha-sarcin and ricin retain their specificity when tested on a synthetic oligoribonucleotide (35-mer) that mimics a region of 28 S ribosomal ribonucleic acid.
    Endo Y; Chan YL; Lin A; Tsurugi K; Wool IG
    J Biol Chem; 1988 Jun; 263(17):7917-20. PubMed ID: 3372511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis.
    Endo Y; Glück A; Wool IG
    J Mol Biol; 1991 Sep; 221(1):193-207. PubMed ID: 1920404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of RNases and toxins upon injection into Xenopus oocytes.
    Saxena SK; Rybak SM; Winkler G; Meade HM; McGray P; Youle RJ; Ackerman EJ
    J Biol Chem; 1991 Nov; 266(31):21208-14. PubMed ID: 1939163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(2):567-80. PubMed ID: 9878430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-protein interaction. An analysis with RNA oligonucleotides of the recognition by alpha-sarcin of a ribosomal domain critical for function.
    Endo Y; Glück A; Chan YL; Tsurugi K; Wool IG
    J Biol Chem; 1990 Feb; 265(4):2216-22. PubMed ID: 2298746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants.
    Glück A; Endo Y; Wool IG
    J Mol Biol; 1992 Jul; 226(2):411-24. PubMed ID: 1379305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the 28 S ribosomal RNA identity element (G4319) for alpha-sarcin and the relationship of recognition to the selection of the catalytic site.
    Glück A; Wool IG
    J Mol Biol; 1996 Mar; 256(5):838-48. PubMed ID: 8601835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ribosomal RNA identity elements for ricin and for alpha-sarcin: mutations in the putative CG pair that closes a GAGA tetraloop.
    Glück A; Endo Y; Wool IG
    Nucleic Acids Res; 1994 Feb; 22(3):321-4. PubMed ID: 8127668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the conformation of the alpha sarcin stem-loop of 28S rRNA.
    Szewczak AA; Chan YL; Moore PB; Wool IG
    Biochimie; 1991; 73(7-8):871-7. PubMed ID: 1742362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal RNA identity elements for recognition by ricin and by alpha-sarcin: mutation in the putative CG pair that closes a GAGA tetraloop.
    Endo Y; Gluck A; Wool IG
    Nucleic Acids Symp Ser; 1993; (29):165-6. PubMed ID: 8247752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligonucleotides complementary to the alpha-sarcin domain of 28S rRNA inhibit cell-free protein synthesis.
    Brigotti M; Lorenzetti R; Denaro M; Carnicelli D; Montanaro L; Sperti S
    Biochem Mol Biol Int; 1993 Dec; 31(5):897-903. PubMed ID: 8136707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes in the structure of domains II and V of 28S rRNA in ribosomes treated with the translational inhibitors ricin or alpha-sarcin.
    Larsson SL; Sloma MS; Nygård O
    Biochim Biophys Acta; 2002 Aug; 1577(1):53-62. PubMed ID: 12151095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic structure of the sarcin/ricin domain in rat 28S ribosomal RNA investigated by hybridization with oligodeoxynucleotide.
    Lu B; Li Q; Liu WY
    Biol Chem; 1997 Jul; 378(7):697-9. PubMed ID: 9278149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-sarcin impairs the N-glycosidase activity of ricin on ribosomes.
    Sperti S; Zamboni M; Brigotti M; Rambelli F; Montanaro L
    Biochem Biophys Res Commun; 1989 Apr; 160(2):857-61. PubMed ID: 2719703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The conformation of the sarcin/ricin loop from 28S ribosomal RNA.
    Szewczak AA; Moore PB; Chang YL; Wool IG
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9581-5. PubMed ID: 8415744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blocking of the function of alpha-sarcin domain of 28S ribosomal RNA using the synthetic oligonucleotides as antisense DNA probes.
    Grzywacz-Bohun E; Twardowski T
    Acta Biochim Pol; 1992; 39(1):65-73. PubMed ID: 1441838
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural energetics and base-pair opening dynamics in sarcin-ricin domain RNA.
    Chen C; Jiang L; Michalczyk R; Russu IM
    Biochemistry; 2006 Nov; 45(45):13606-13. PubMed ID: 17087514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.