BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22116356)

  • 1. Analysis of cellular localization and function of carboxy-terminal mutants of pendrin.
    Bizhanova A; Chew TL; Khuon S; Kopp P
    Cell Physiol Biochem; 2011; 28(3):423-34. PubMed ID: 22116356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TSH regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells.
    Pesce L; Bizhanova A; Caraballo JC; Westphal W; Butti ML; Comellas A; Kopp P
    Endocrinology; 2012 Jan; 153(1):512-21. PubMed ID: 22109890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controversies concerning the role of pendrin as an apical iodide transporter in thyroid follicular cells.
    Bizhanova A; Kopp P
    Cell Physiol Biochem; 2011; 28(3):485-90. PubMed ID: 22116361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of pendrin in a polarized cell system. Evidence for pendrin-mediated apical iodide efflux.
    Gillam MP; Sidhaye AR; Lee EJ; Rutishauser J; Stephan CW; Kopp P
    J Biol Chem; 2004 Mar; 279(13):13004-10. PubMed ID: 14715652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics and phenomics of Pendred syndrome.
    Bizhanova A; Kopp P
    Mol Cell Endocrinol; 2010 Jun; 322(1-2):83-90. PubMed ID: 20298745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pendrin and anoctamin as mediators of apical iodide efflux in thyroid cells.
    Silveira JC; Kopp PA
    Curr Opin Endocrinol Diabetes Obes; 2015 Oct; 22(5):374-80. PubMed ID: 26313899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome.
    Taylor JP; Metcalfe RA; Watson PF; Weetman AP; Trembath RC
    J Clin Endocrinol Metab; 2002 Apr; 87(4):1778-84. PubMed ID: 11932316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pendred syndrome.
    Wémeau JL; Kopp P
    Best Pract Res Clin Endocrinol Metab; 2017 Mar; 31(2):213-224. PubMed ID: 28648509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iodide excess regulates its own efflux: a possible involvement of pendrin.
    Calil-Silveira J; Serrano-Nascimento C; Kopp PA; Nunes MT
    Am J Physiol Cell Physiol; 2016 Apr; 310(7):C576-82. PubMed ID: 26791486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homology of pendrin, sodium-iodide symporter and apical iodide transporter.
    Benvenga S; Guarneri F
    Front Biosci (Landmark Ed); 2018 Jun; 23(10):1864-1873. PubMed ID: 29772533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pendrin: the thyrocyte apical membrane iodide transporter?
    Twyffels L; Massart C; Golstein PE; Raspe E; Van Sande J; Dumont JE; Beauwens R; Kruys V
    Cell Physiol Biochem; 2011; 28(3):491-6. PubMed ID: 22116362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pendred syndrome and iodide transport in the thyroid.
    Kopp P; Pesce L; Solis-S JC
    Trends Endocrinol Metab; 2008 Sep; 19(7):260-8. PubMed ID: 18692402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minireview: The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid.
    Bizhanova A; Kopp P
    Endocrinology; 2009 Mar; 150(3):1084-90. PubMed ID: 19196800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of allelic variants of pendrin (SLC26A4) with loss and gain of function.
    Dossena S; Bizhanova A; Nofziger C; Bernardinelli E; Ramsauer J; Kopp P; Paulmichl M
    Cell Physiol Biochem; 2011; 28(3):467-76. PubMed ID: 22116359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A FRET-based approach for quantitative evaluation of forskolin-induced pendrin trafficking at the plasma membrane in bronchial NCI H292 cells.
    Tamma G; Ranieri M; Dossena S; Di Mise A; Nofziger C; Svelto M; Paulmichl M; Valenti G
    Cell Physiol Biochem; 2013; 32(7):200-9. PubMed ID: 24429826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of thyroglobulin and pendrin on iodide flux through the thyrocyte.
    Kohn LD; Suzuki K; Nakazato M; Royaux I; Green ED
    Trends Endocrinol Metab; 2001; 12(1):10-6. PubMed ID: 11137035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of pendrin mutations found in the Israeli and Palestinian populations.
    Dossena S; Nofziger C; Brownstein Z; Kanaan M; Avraham KB; Paulmichl M
    Cell Physiol Biochem; 2011; 28(3):477-84. PubMed ID: 22116360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of solute carrier family 26 member 7 (Slc26a7) by thyroid stimulating hormone in thyrocytes.
    Tanimura Y; Kiriya M; Kawashima A; Mori H; Luo Y; Kondo T; Suzuki K
    Endocr J; 2021 Jun; 68(6):691-699. PubMed ID: 33583874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells.
    Royaux IE; Suzuki K; Mori A; Katoh R; Everett LA; Kohn LD; Green ED
    Endocrinology; 2000 Feb; 141(2):839-45. PubMed ID: 10650967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iodide transport in primary cultured thyroid follicle cells: evidence of a TSH-regulated channel mediating iodide efflux selectively across the apical domain of the plasma membrane.
    Nilsson M; Björkman U; Ekholm R; Ericson LE
    Eur J Cell Biol; 1990 Aug; 52(2):270-81. PubMed ID: 1706997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.