BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22116427)

  • 1. Programmable Shunt Assistant tested in Cambridge shunt evaluation laboratory.
    Czosnyka M; Czosnyka Z; Pickard JD
    Acta Neurochir Suppl; 2012; 113():71-6. PubMed ID: 22116427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI safety of a programmable shunt assistant at 3 and 7 Tesla.
    Mirzayan MJ; Klinge PM; Samii M; Goetz F; Krauss JK
    Br J Neurosurg; 2012 Jun; 26(3):397-400. PubMed ID: 22348282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shunt assistant valve: bench test investigations and clinical performance.
    Tokoro K; Suzuki S; Chiba Y; Tsuda M
    Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion-evidence of motion-induced flow.
    Kimura T; Schulz M; Shimoji K; Miyajima M; Arai H; Thomale UW
    Acta Neurochir (Wien); 2016 Oct; 158(10):2011-8. PubMed ID: 27553048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic properties of the Certas hydrocephalus shunt.
    Czosnyka Z; Pickard JD; Czosnyka M
    J Neurosurg Pediatr; 2013 Feb; 11(2):198-204. PubMed ID: 23215818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt.
    Allin DM; Czosnyka M; Richards HK; Pickard JD; Czosnyka ZH
    Cerebrospinal Fluid Res; 2008 Apr; 5():8. PubMed ID: 18426562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PROSAIKA: a prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting.
    Kehler U; Kiefer M; Eymann R; Wagner W; Tschan CA; Langer N; Rohde V; Ludwig HC; Gliemroth J; Meier U; Lemcke J; Thomale UW; Fritsch M; Krauss JK; Mirzayan MJ; Schuhmann M; Huthmann A
    Clin Neurol Neurosurg; 2015 Oct; 137():132-6. PubMed ID: 26196478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro hydrodynamic properties of the Miethke ProGAV hydrocephalus shunt.
    Allin DM; Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD
    Cerebrospinal Fluid Res; 2006 Jun; 3():9. PubMed ID: 16808836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices.
    Akbar M; Aschoff A; Georgi JC; Nennig E; Heiland S; Abel R; Stippich C
    Rofo; 2010 Jul; 182(7):594-602. PubMed ID: 20563954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of existing and future electromechanical shunt valves in combination with a model for brain fluid dynamics.
    Elixmann IM; Walter M; Kiefer M; Leonhardt S
    Acta Neurochir Suppl; 2012; 113():77-81. PubMed ID: 22116428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The Codman Medos programmable shunt valve. Evaluation of 53 implantations in 50 patients].
    Belliard H; Roux FX; Turak B; Nataf F; Devaux B; Cioloca C
    Neurochirurgie; 1996; 42(3):139-45; discussion 145-6. PubMed ID: 9084740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. External re-programmation by a new radionuclidic technique of electronic cerebrospinal fluid valve in case of hydrocephalus.
    Zissimopoulos A; Birbilis T; Cassimos D; Deftereos S; Karathanos E; Chatzimichael A; Prassopoulos P
    Hell J Nucl Med; 2009; 12(3):244-7. PubMed ID: 19936336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of three new models of hydrocephalus shunts.
    Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir Suppl; 2005; 95():223-7. PubMed ID: 16463854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Overdrainage in the treatment of hydrocephalus].
    Hirsch JF; Hoppe-Hirsch E; Sainte-Rose C
    Pediatrie; 1991; 46(8-9):617-23. PubMed ID: 1660122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Clinical experience with the Sp[hy adjustable valve in the treatment of adult hydrocephalus. A series of 147 cases].
    Bret P; Guyotat J; Ricci AC; Mottolese C; Jouanneau E
    Neurochirurgie; 1999 May; 45(2):98-108; discussion 108-9. PubMed ID: 10448649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adjustable CSF shunt: advices for clinical use.
    Lundkvist B; Eklund A; Koskinen LO; Malm J
    Acta Neurol Scand; 2003 Jul; 108(1):38-42. PubMed ID: 12807391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.