These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22116618)

  • 1. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays.
    Park H; Shin D; Kang G; Baek S; Kim K; Padilla WJ
    Adv Mater; 2011 Dec; 23(48):5796-800. PubMed ID: 22116618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings.
    Oh SJ; Chhajed S; Poxson DJ; Cho J; Schubert EF; Tark SJ; Kim D; Kim JK
    Opt Express; 2013 Jan; 21 Suppl 1():A157-66. PubMed ID: 23389267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection.
    Ji S; Song K; Nguyen TB; Kim N; Lim H
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography.
    Lu Y; Lal A
    Nano Lett; 2010 Nov; 10(11):4651-6. PubMed ID: 20939564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized antireflective silicon nanostructure arrays using nanosphere lithography.
    Lee D; Bae J; Hong S; Yang H; Kim YB
    Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nearly zero reflectance of nano-pyramids and dual-antireflection coating structure for monocrystalline silicon solar cells.
    Chang HS; Jung HC
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3680-3. PubMed ID: 21776753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antireflective properties of porous Si nanocolumnar structures with graded refractive index layers.
    Jang SJ; Song YM; Yu JS; Yeo CI; Lee YT
    Opt Lett; 2011 Jan; 36(2):253-5. PubMed ID: 21263517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring broadband antireflection on a silicon surface through two-step silver-assisted chemical etching.
    Chen CY; Li WJ; Chen HH
    Chemphyschem; 2012 Apr; 13(6):1415-20. PubMed ID: 22407606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband light management using low-Q whispering gallery modes in spherical nanoshells.
    Yao Y; Yao J; Narasimhan VK; Ruan Z; Xie C; Fan S; Cui Y
    Nat Commun; 2012 Feb; 3():664. PubMed ID: 22314360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of optical transmission with random nanohole structures.
    Son J; Verma LK; Danner AJ; Bhatia CS; Yang H
    Opt Express; 2011 Jan; 19 Suppl 1():A35-40. PubMed ID: 21263710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored antireflective biomimetic nanostructures for UV applications.
    Morhard C; Pacholski C; Lehr D; Brunner R; Helgert M; Sundermann M; Spatz JP
    Nanotechnology; 2010 Oct; 21(42):425301. PubMed ID: 20858934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics.
    Chang CH; Yu P; Hsu MH; Tseng PC; Chang WL; Sun WC; Hsu WC; Hsu SH; Chang YC
    Nanotechnology; 2011 Mar; 22(9):095201. PubMed ID: 21258142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells.
    Chen JY; Chang WL; Huang CK; Sun KW
    Opt Express; 2011 Jul; 19(15):14411-9. PubMed ID: 21934803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics.
    Han SE; Chen G
    Nano Lett; 2010 Mar; 10(3):1012-5. PubMed ID: 20141156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patchy and multiregion janus particles with tunable optical properties.
    McConnell MD; Kraeutler MJ; Yang S; Composto RJ
    Nano Lett; 2010 Feb; 10(2):603-9. PubMed ID: 20063864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays.
    Najiminaini M; Vasefi F; Kaminska B; Carson JJ
    Opt Express; 2010 Oct; 18(21):22255-70. PubMed ID: 20941127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films.
    Toma M; Loget G; Corn RM
    Nano Lett; 2013; 13(12):6164-9. PubMed ID: 24195672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface.
    Leem JW; Yu JS
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7932-8. PubMed ID: 23421159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays.
    Zhu J; Yu Z; Burkhard GF; Hsu CM; Connor ST; Xu Y; Wang Q; McGehee M; Fan S; Cui Y
    Nano Lett; 2009 Jan; 9(1):279-82. PubMed ID: 19072061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.