These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22116618)

  • 21. Nanophotonic light trapping with patterned transparent conductive oxides.
    Vasudev AP; Schuller JA; Brongersma ML
    Opt Express; 2012 May; 20(10):A385-94. PubMed ID: 22712089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Buried nanoantenna arrays: versatile antireflection coating.
    Kabiri A; Girgis E; Capasso F
    Nano Lett; 2013; 13(12):6040-7. PubMed ID: 24266700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures.
    Tate N; Sugiyama H; Naruse M; Nomura W; Yatsui T; Kawazoe T; Ohtsu M
    Opt Express; 2009 Jun; 17(13):11113-21. PubMed ID: 19550511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure.
    Zhao Y; Chen F; Shen Q; Zhang L
    Opt Express; 2012 May; 20(10):11121-36. PubMed ID: 22565735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection.
    Wang HP; Lai KY; Lin YR; Lin CA; He JH
    Langmuir; 2010 Aug; 26(15):12855-8. PubMed ID: 20666420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate-modified scattering properties of silicon nanostructures for solar energy applications.
    Fofang NT; Luk TS; Okandan M; Nielson GN; Brener I
    Opt Express; 2013 Feb; 21(4):4774-82. PubMed ID: 23482011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomanipulation using silicon photonic crystal resonators.
    Mandal S; Serey X; Erickson D
    Nano Lett; 2010 Jan; 10(1):99-104. PubMed ID: 19957918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications.
    Leem JW; Song YM; Yu JS
    Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays.
    Tsai MA; Tseng PC; Chen HC; Kuo HC; Yu P
    Opt Express; 2011 Jan; 19 Suppl 1():A28-34. PubMed ID: 21263709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spherically shaped micro-structured antireflective surfaces.
    Bouffaron R; Escoubas L; Brissonneau V; Simon JJ; Berginc G; Torchio P; Flory F; Masclet P
    Opt Express; 2009 Nov; 17(24):21590-7. PubMed ID: 19997400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanosphere lithography from template-directed colloidal sphere assemblies.
    Yan Q; Chen A; Chua SJ; Zhao XS
    J Nanosci Nanotechnol; 2006 Jun; 6(6):1815-8. PubMed ID: 17025090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings.
    Wang KX; Yu Z; Liu V; Cui Y; Fan S
    Nano Lett; 2012 Mar; 12(3):1616-9. PubMed ID: 22356436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption.
    Hung YJ; Lee SL; Coldren LA
    Opt Express; 2010 Mar; 18(7):6841-52. PubMed ID: 20389703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures.
    Oh J; Yuan HC; Branz HM
    Nat Nanotechnol; 2012 Nov; 7(11):743-8. PubMed ID: 23023643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficiency enhancement of silicon solar cells using a nano-scale honeycomb broadband anti-reflection structure.
    Huang CK; Sun KW; Chang WL
    Opt Express; 2012 Jan; 20(1):A85-93. PubMed ID: 22379678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel method to fabricate silicon tubular gratings with broadband antireflection and super-hydrophobicity.
    Gao Y; Shi T; Tan X; Liao G
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4469-74. PubMed ID: 24738414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZnO nanostructures as efficient antireflection layers in solar cells.
    Lee YJ; Ruby DS; Peters DW; McKenzie BB; Hsu JW
    Nano Lett; 2008 May; 8(5):1501-5. PubMed ID: 18416581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Far-field optical control of a movable subdiffraction light grid.
    Girard J; Scherrer G; Cattoni A; Le Moal E; Talneau A; Cluzel B; de Fornel F; Sentenac A
    Phys Rev Lett; 2012 Nov; 109(18):187404. PubMed ID: 23215328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.