These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22116750)

  • 1. Damping in flapping flight and its implications for manoeuvring, scaling and evolution.
    Hedrick TL
    J Exp Biol; 2011 Dec; 214(Pt 24):4073-81. PubMed ID: 22116750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wingbeat time and the scaling of passive rotational damping in flapping flight.
    Hedrick TL; Cheng B; Deng X
    Science; 2009 Apr; 324(5924):252-5. PubMed ID: 19359586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamic flight performance in flap-gliding birds and bats.
    Muijres FT; Henningsson P; Stuiver M; Hedenström A
    J Theor Biol; 2012 Aug; 306():120-8. PubMed ID: 22726811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bat flight generates complex aerodynamic tracks.
    Hedenström A; Johansson LC; Wolf M; von Busse R; Winter Y; Spedding GR
    Science; 2007 May; 316(5826):894-7. PubMed ID: 17495171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A morphospace-based test for competitive exclusion among flying vertebrates: did birds, bats and pterosaurs get in each other's space?
    McGowan AJ; Dyke GJ
    J Evol Biol; 2007 May; 20(3):1230-6. PubMed ID: 17465933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, form, and function of flight in engineering and the living world.
    Lindhe Norberg UM
    J Morphol; 2002 Apr; 252(1):52-81. PubMed ID: 11921036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size.
    Norberg UM; Norberg RÅ
    J Exp Biol; 2012 Mar; 215(Pt 5):711-22. PubMed ID: 22323193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coupled kinematics-energetics model for predicting energy efficient flapping flight.
    Salehipour H; Willis DJ
    J Theor Biol; 2013 Feb; 318():173-96. PubMed ID: 23084891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats.
    Bell E; Andres B; Goswami A
    J Evol Biol; 2011 Dec; 24(12):2586-99. PubMed ID: 21955123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency.
    Taylor GK; Nudds RL; Thomas AL
    Nature; 2003 Oct; 425(6959):707-11. PubMed ID: 14562101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal flight dynamics II. Longitudinal stability in flapping flight.
    Taylor GK; Thomas AL
    J Theor Biol; 2002 Feb; 214(3):351-70. PubMed ID: 11846595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bird or bat: comparing airframe design and flight performance.
    Hedenström A; Johansson LC; Spedding GR
    Bioinspir Biomim; 2009 Mar; 4(1):015001. PubMed ID: 19258691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-dimensional aerodynamic model of freely flying insects.
    Iima M
    J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal locomotion: a new spin on bat flight.
    Dickinson M
    Curr Biol; 2008 Jun; 18(11):R468-70. PubMed ID: 18522816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability.
    Nudds RL; Dyke GJ
    Science; 2010 May; 328(5980):887-9. PubMed ID: 20466930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untethered hovering flapping flight of a 3D-printed mechanical insect.
    Richter C; Lipson H
    Artif Life; 2011; 17(2):73-86. PubMed ID: 21370958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.