BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2211710)

  • 1. Modification of triantennary glycopeptide into probes for the asialoglycoprotein receptor of hepatocytes.
    Rice KG; Lee YC
    J Biol Chem; 1990 Oct; 265(30):18423-8. PubMed ID: 2211710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defined geometry of binding between triantennary glycopeptide and the asialoglycoprotein receptor of rat heptocytes.
    Rice KG; Weisz OA; Barthel T; Lee RT; Lee YC
    J Biol Chem; 1990 Oct; 265(30):18429-34. PubMed ID: 2211711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of N-linked bovine fetuin glycopeptides to isolated rabbit hepatocytes: Gal/GalNAc hepatic lectin discrimination between Gal beta(1,4)GlcNAc and Gal beta(1,3)GlcNAc in a triantennary structure.
    Townsend RR; Hardy MR; Wong TC; Lee YC
    Biochemistry; 1986 Sep; 25(19):5716-25. PubMed ID: 2430615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interterminal distance and flexibility of a triantennary glycopeptide as measured by resonance energy transfer.
    Rice KG; Wu RG; Brand L; Lee YC
    Biochemistry; 1991 Jul; 30(27):6646-55. PubMed ID: 2065052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of a high-affinity photolabeling reagent for the Gal/GalNAc lectin of mammalian liver: demonstration of galactose-combining sites on each subunit of rabbit hepatic lectin.
    Lee RT; Lee YC
    Biochemistry; 1986 Nov; 25(22):6835-41. PubMed ID: 2432926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational studies of glycopeptides by energy transfer. Introduction of fluorophore at specific branches of biantennary glycopeptides.
    Lee KB; Lee YC
    J Biol Chem; 1996 Jan; 271(3):1462-9. PubMed ID: 8576139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of oligosaccharide antenna flexibility induced by exoglycosidase trimming.
    Rice KG; Wu P; Brand L; Lee YC
    Biochemistry; 1993 Jul; 32(28):7264-70. PubMed ID: 8343515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides.
    Lambert JM; McIntyre G; Gauthier MN; Zullo D; Rao V; Steeves RM; Goldmacher VS; Blättler WA
    Biochemistry; 1991 Apr; 30(13):3234-47. PubMed ID: 1706936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential flexibilities in three branches of an N-linked triantennary glycopeptide.
    Wu PG; Rice KG; Brand L; Lee YC
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9355-9. PubMed ID: 1924399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-glycosylation site mapping of human serotransferrin by serial lectin affinity chromatography, fast atom bombardment-mass spectrometry, and 1H nuclear magnetic resonance spectroscopy.
    Fu D; van Halbeek H
    Anal Biochem; 1992 Oct; 206(1):53-63. PubMed ID: 1456441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed structural analysis of asparagine-linked oligosaccharides of the nicotinic acetylcholine receptor from Torpedo californica.
    Shoji H; Takahashi N; Nomoto H; Ishikawa M; Shimada I; Arata Y; Hayashi K
    Eur J Biochem; 1992 Jul; 207(2):631-41. PubMed ID: 1633814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand.
    Plank C; Zatloukal K; Cotten M; Mechtler K; Wagner E
    Bioconjug Chem; 1992; 3(6):533-9. PubMed ID: 1463783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of homogeneous glycopeptides and their utility as DNA condensing agents.
    Collard WT; Evers DL; McKenzie DL; Rice KG
    Carbohydr Res; 2000 Jan; 323(1-4):176-84. PubMed ID: 10782299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UDPgalactose:glycoprotein-N-acetyl-D-galactosamine 3-beta-D-galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates.
    Granovsky M; Bielfeldt T; Peters S; Paulsen H; Meldal M; Brockhausen J; Brockhausen I
    Eur J Biochem; 1994 May; 221(3):1039-46. PubMed ID: 8181460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo targeting function of N-linked oligosaccharides with terminating galactose and N-acetylgalactosamine residues.
    Chiu MH; Tamura T; Wadhwa MS; Rice KG
    J Biol Chem; 1994 Jun; 269(23):16195-202. PubMed ID: 8206921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete 1H and 13C resonance assignments of a 21-amino acid glycopeptide prepared from human serum transferrin.
    Lu J; van Halbeek H
    Carbohydr Res; 1996 Dec; 296():1-21. PubMed ID: 9008840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae.
    Santer UV; DeSantis R; Hård KJ; van Kuik JA; Vliegenthart JF; Won B; Glick MC
    Eur J Biochem; 1989 Apr; 181(1):249-60. PubMed ID: 2653823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure of two sialylated triantennary glycans from human serotransferrin.
    Spik G; Debruyne V; Montreuil J; van Halbeek H; Vliegenthart JF
    FEBS Lett; 1985 Apr; 183(1):65-9. PubMed ID: 3979568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical structure of the carbohydrate moiety of fucose-rich glycopeptides from human pancreatic juice.
    Yoshihara S; Matsue H; Sasaki M; Shibata S; Konn M; Fukuzawa A; Endo M
    Int J Pancreatol; 1995 Apr; 17(2):181-7. PubMed ID: 7622940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic methods of glycopeptide assembly, and biological analysis of glycopeptide products.
    Meldal M; St Hilaire PM
    Curr Opin Chem Biol; 1997 Dec; 1(4):552-63. PubMed ID: 9667891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.