These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22117115)

  • 1. The effect of material choice on biofilm formation in a model warm water distribution system.
    Waines PL; Moate R; Moody AJ; Allen M; Bradley G
    Biofouling; 2011 Nov; 27(10):1161-74. PubMed ID: 22117115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene.
    van der Kooij D; Veenendaal HR; Scheffer WJ
    Water Res; 2005 Aug; 39(13):2789-98. PubMed ID: 16019051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials.
    Moritz MM; Flemming HC; Wingender J
    Int J Hyg Environ Health; 2010 Jun; 213(3):190-7. PubMed ID: 20556878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial diversity in biofilms on water distribution pipes of different materials.
    Yu J; Kim D; Lee T
    Water Sci Technol; 2010; 61(1):163-71. PubMed ID: 20057102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes.
    Lehtola MJ; Laxander M; Miettinen IT; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2006 Jun; 40(11):2151-60. PubMed ID: 16725175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.
    Lehtola MJ; Miettinen IT; Keinänen MM; Kekki TK; Laine O; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2004 Oct; 38(17):3769-79. PubMed ID: 15350429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study.
    Inkinen J; Kaunisto T; Pursiainen A; Miettinen IT; Kusnetsov J; Riihinen K; Keinänen-Toivola MM
    Water Res; 2014 Feb; 49():83-91. PubMed ID: 24317021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pipe materials on chlorine-resistant biofilm formation under long-term high chlorine level.
    Zhu Z; Wu C; Zhong D; Yuan Y; Shan L; Zhang J
    Appl Biochem Biotechnol; 2014 Jul; 173(6):1564-78. PubMed ID: 24828580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of chloramines disinfection for biofilm formation control on copper and stainless steel pipe materials].
    Zhou LL; Zhang YJ; Li X; Li GB
    Huan Jing Ke Xue; 2008 Dec; 29(12):3372-5. PubMed ID: 19256370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm forming ability of Sphingomonas paucimobilis isolated from community drinking water systems on plumbing materials used in water distribution.
    Gulati P; Ghosh M
    J Water Health; 2017 Oct; 15(6):942-954. PubMed ID: 29215358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contamination potential of drinking water distribution network biofilms.
    Wingender J; Flemming HC
    Water Sci Technol; 2004; 49(11-12):277-86. PubMed ID: 15303752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of drinking water biofilm in flow/non-flow conditions.
    Manuel CM; Nunes OC; Melo LF
    Water Res; 2007 Feb; 41(3):551-62. PubMed ID: 17184812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new coupon design for simultaneous analysis of in situ microbial biofilm formation and community structure in drinking water distribution systems.
    Deines P; Sekar R; Husband PS; Boxall JB; Osborn AM; Biggs CA
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):749-56. PubMed ID: 20300747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of phosphorus on biofilm formation in model drinking water distribution systems.
    Fang W; Hu JY; Ong SL
    J Appl Microbiol; 2009 Apr; 106(4):1328-35. PubMed ID: 19187141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces.
    Pyle BH; McFeters GA
    Biofouling; 1990; 2():113-20. PubMed ID: 11537750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation.
    Speranza B; Corbo MR; Sinigaglia M
    J Food Sci; 2011; 76(1):M12-6. PubMed ID: 21535687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drinking water biofilms on copper and stainless steel exhibit specific molecular responses towards different disinfection regimes at waterworks.
    Jungfer C; Friedrich F; Varela Villarreal J; Brändle K; Gross HJ; Obst U; Schwartz T
    Biofouling; 2013 Sep; 29(8):891-907. PubMed ID: 23875760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Microscope observation of the microbial distribution on the wall of different pipe material in water supply system].
    Bai XH; Cai YL; Zhi XH; You JY
    Huan Jing Ke Xue; 2009 Sep; 30(9):2555-9. PubMed ID: 19927803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of susceptibility of polymer and rubber materials intended into contact with drinking water on biofilm formation.
    Szczotko M; Stankiewicz A; Jamsheer-Bratkowska M
    Rocz Panstw Zakl Hig; 2016; 67(4):409-417. PubMed ID: 27925711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilms and microbially influenced cuprosolvency in domestic copper plumbing systems.
    Critchley MM; Cromar NJ; McClure N; Fallowfield HJ
    J Appl Microbiol; 2001 Oct; 91(4):646-51. PubMed ID: 11576301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.