BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 22117512)

  • 21. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase.
    Kondo A; Shigechi H; Abe M; Uyama K; Matsumoto T; Takahashi S; Ueda M; Tanaka A; Kishimoto M; Fukuda H
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):291-6. PubMed ID: 11935178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High bioethanol titre from Manihot glaziovii through fed-batch simultaneous saccharification and fermentation in Automatic Gas Potential Test System.
    Moshi AP; Crespo CF; Badshah M; Hosea KM; Mshandete AM; Mattiasson B
    Bioresour Technol; 2014 Mar; 156():348-56. PubMed ID: 24534761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae.
    El-Dalatony MM; Kurade MB; Abou-Shanab RAI; Kim H; Salama ES; Jeon BH
    Bioresour Technol; 2016 Nov; 219():98-105. PubMed ID: 27479800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells.
    Chen JP; Wu KW; Fukuda H
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):59-67. PubMed ID: 18425612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata.
    Hon-Nami K
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):808-28. PubMed ID: 18563656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata.
    Hon-Nami K
    Appl Biochem Biotechnol; 2006; 129-132():808-28. PubMed ID: 16915690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of alpha-amylase.
    Jamai L; Ettayebi K; El Yamani J; Ettayebi M
    Bioresour Technol; 2007 Oct; 98(14):2765-70. PubMed ID: 17127052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank.
    Chai X; Zhao X
    Bioresour Technol; 2012 Jul; 116():360-5. PubMed ID: 22531167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microalgae--novel highly efficient starch producers.
    Brányiková I; Maršálková B; Doucha J; Brányik T; Bišová K; Zachleder V; Vítová M
    Biotechnol Bioeng; 2011 Apr; 108(4):766-76. PubMed ID: 21404251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol.
    Moukamnerd C; Kino-oka M; Sugiyama M; Kaneko Y; Boonchird C; Harashima S; Noda H; Ninomiya K; Shioya S; Katakura Y
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):87-94. PubMed ID: 20577734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling.
    Białas W; Szymanowska D; Grajek W
    Bioresour Technol; 2010 May; 101(9):3126-31. PubMed ID: 20064710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol fermentation technologies from sugar and starch feedstocks.
    Bai FW; Anderson WA; Moo-Young M
    Biotechnol Adv; 2008; 26(1):89-105. PubMed ID: 17964107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon dioxide inhibition of yeast growth in biomass production.
    Chen SL; Gutmains F
    Biotechnol Bioeng; 1976 Oct; 18(10):1455-62. PubMed ID: 786407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates.
    Ha JH; Shah N; Ul-Islam M; Park JK
    Enzyme Microb Technol; 2011 Aug; 49(3):298-304. PubMed ID: 22112515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Green biorefinery of fresh cattail for microalgal culture and ethanol production.
    Rahman QM; Wang L; Zhang B; Xiu S; Shahbazi A
    Bioresour Technol; 2015 Jun; 185():436-40. PubMed ID: 25804533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioethanol Production from
    Kim SK; Nguyen CM; Ko EH; Kim IC; Kim JS; Kim JC
    J Microbiol Biotechnol; 2017 Jun; 27(6):1112-1119. PubMed ID: 28372036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.
    Kargupta W; Ganesh A; Mukherji S
    Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modified conventional bioreactor for microalgae cultivation.
    Verma R; Kumar R; Mehan L; Srivastava A
    J Biosci Bioeng; 2018 Feb; 125(2):224-230. PubMed ID: 28988616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta.
    Okamoto K; Nitta Y; Maekawa N; Yanase H
    Enzyme Microb Technol; 2011 Mar; 48(3):273-7. PubMed ID: 22112911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.