These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 22117617)

  • 1. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.
    Xiang C; Lu W; Zhu Y; Sun Z; Yan Z; Hwang CC; Tour JM
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):131-6. PubMed ID: 22117617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 3. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films.
    Lee DH; Lee JA; Lee WJ; Kim SO
    Small; 2011 Jan; 7(1):95-100. PubMed ID: 21104826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds.
    Ostojic GN; Hersam MC
    Small; 2012 Jun; 8(12):1840-5. PubMed ID: 22461319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene nanoribbons as an advanced precursor for making carbon fiber.
    Xiang C; Behabtu N; Liu Y; Chae HG; Young CC; Genorio B; Tsentalovich DE; Zhang C; Kosynkin DV; Lomeda JR; Hwang CC; Kumar S; Pasquali M; Tour JM
    ACS Nano; 2013 Feb; 7(2):1628-37. PubMed ID: 23339339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly conductive and stretchable polymer composites based on graphene/MWCNT network.
    Chen M; Tao T; Zhang L; Gao W; Li C
    Chem Commun (Camb); 2013 Feb; 49(16):1612-4. PubMed ID: 23334065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers.
    Agarwal M; Xing Q; Shim BS; Kotov N; Varahramyan K; Lvov Y
    Nanotechnology; 2009 May; 20(21):215602. PubMed ID: 19423933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible transparent conducting single-wall carbon nanotube film with network bridging method.
    Song YI; Yang CM; Kim DY; Kanoh H; Kaneko K
    J Colloid Interface Sci; 2008 Feb; 318(2):365-71. PubMed ID: 18036603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces.
    Kim SN; Slocik JM; Naik RR
    Small; 2010 Sep; 6(18):1992-5. PubMed ID: 20721951
    [No Abstract]   [Full Text] [Related]  

  • 11. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically conductive polymeric materials with high stretchability and excellent elasticity by a surface coating method.
    Li Y; Zhao L; Shimizu H
    Macromol Rapid Commun; 2011 Feb; 32(3):289-94. PubMed ID: 21433173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films.
    Wang R; Sun J; Gao L; Xu C; Zhang J; Liu Y
    Nanoscale; 2011 Mar; 3(3):904-6. PubMed ID: 21132173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized multilayered graphene platform for urea sensor.
    Srivastava RK; Srivastava S; Narayanan TN; Mahlotra BD; Vajtai R; Ajayan PM; Srivastava A
    ACS Nano; 2012 Jan; 6(1):168-75. PubMed ID: 22117758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.
    Das S; Wajid AS; Shelburne JL; Liao YC; Green MJ
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1844-51. PubMed ID: 21539387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing.
    Zhong XH; Wang R; Wen YY
    Phys Chem Chem Phys; 2013 Mar; 15(11):3861-5. PubMed ID: 23399977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose.
    Tsai YC; Li SC; Liao SW
    Biosens Bioelectron; 2006 Oct; 22(4):495-500. PubMed ID: 16870421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale characterization of carbazole-indole copolymers modified carbon fiber surfaces.
    Sarac AS; Serantoni M; Tofail SA; Cunnane VJ
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1677-82. PubMed ID: 16245527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer.
    Ma Y; Cheung W; Wei D; Bogozi A; Chiu PL; Wang L; Pontoriero F; Mendelsohn R; He H
    ACS Nano; 2008 Jun; 2(6):1197-204. PubMed ID: 19206337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.