These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22118076)

  • 1. Identification of lactose ureide, a urea derivative of lactose, in milk and milk products.
    Suyama K; Sasaki A; Oritani T; Hosono A
    J Dairy Sci; 2011 Dec; 94(12):5857-63. PubMed ID: 22118076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.
    Milkovska-Stamenova S; Hoffmann R
    Food Chem; 2017 Apr; 221():489-495. PubMed ID: 27979232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid quality control analysis of (13)C-enriched substrate synthesis by isotope ratio mass spectrometry.
    Morrison DJ; Dodson B; Preston T; Weaver LT
    Rapid Commun Mass Spectrom; 2001; 15(15):1279-82. PubMed ID: 11466784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gastrointestinal handling of glycosyl [13C]ureides.
    Morrison DJ; Dodson B; Preston T; Weaver LT
    Eur J Clin Nutr; 2003 Aug; 57(8):1017-24. PubMed ID: 12879097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexose-derived glycation sites in processed bovine milk.
    Milkovska-Stamenova S; Hoffmann R
    J Proteomics; 2016 Feb; 134():102-111. PubMed ID: 26743206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosyl ureides in ruminant nutrition. 3. In vivo studies on the metabolism of glycosyl ureides and corresponding mixtures of their free component molecules.
    Merry RJ; Smith RH; McAllan AB
    Br J Nutr; 1982 Sep; 48(2):305-18. PubMed ID: 6981425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterioration of protein fraction by Maillard reaction in dietetic milks.
    Evangelisti F; Calcagno C; Nardi S; Zunin P
    J Dairy Res; 1999 May; 66(2):237-43. PubMed ID: 10376244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro validation of the lactose 13C-ureide breath test for equine orocaecal transit time measurement.
    Sutton DG; Preston T; Love S
    Equine Vet J Suppl; 2011 Aug; (39):42-8. PubMed ID: 21790753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and proteolysis-derived changes during long-term storage of lactose-hydrolyzed ultrahigh-temperature (UHT) milk.
    Jansson T; Jensen HB; Sundekilde UK; Clausen MR; Eggers N; Larsen LB; Ray C; Andersen HJ; Bertram HC
    J Agric Food Chem; 2014 Nov; 62(46):11270-8. PubMed ID: 25356780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and quantification of bovine protein lactosylation sites in different milk products.
    Milkovska-Stamenova S; Hoffmann R
    J Proteomics; 2016 Feb; 134():112-126. PubMed ID: 26210590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical indicators of heat treatment in fortified and special milks.
    Mendoza MR; Olano A; Villamiel M
    J Agric Food Chem; 2005 Apr; 53(8):2995-9. PubMed ID: 15826050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.
    Troise AD; Buonanno M; Fiore A; Monti SM; Fogliano V
    Food Chem; 2016 Dec; 212():722-9. PubMed ID: 27374589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and shelf-life determination of pasteurized, microfiltered, lactose hydrolyzed skim milk.
    Antunes AE; Silva E Alves AT; Gallina DA; Trento FK; Zacarchenco PB; Van Dender AG; Moreno I; Ormenese RC; Spadoti LM
    J Dairy Sci; 2014 Sep; 97(9):5337-44. PubMed ID: 25022681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The duration of enzyme induction in orocaecal transit time measurements.
    Wutzke KD; Schütt M
    Eur J Clin Nutr; 2007 Oct; 61(10):1162-6. PubMed ID: 17268412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modern proteomic methodologies for the characterization of lactosylation protein targets in milk.
    Arena S; Renzone G; Novi G; Paffetti A; Bernardini G; Santucci A; Scaloni A
    Proteomics; 2010 Oct; 10(19):3414-34. PubMed ID: 20707006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization by ionization mass spectrometry of lactosyl beta-lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose-binding site.
    Leonil J; Molle D; Fauquant J; Maubois JL; Pearce RJ; Bouhallab S
    J Dairy Sci; 1997 Oct; 80(10):2270-81. PubMed ID: 9361199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of iron and lactose supplementation of milk on the Maillard reaction and tryptophan content.
    Birlouez-Aragon I; Moreaux V; Nicolas M; Ducauze CJ
    Food Addit Contam; 1997; 14(4):381-8. PubMed ID: 9205567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the urinary glucose-[¹⁵N, ¹⁵N]-ureide content in the study of the lactose-[¹⁵N, ¹⁵N]-ureide metabolism in healthy humans.
    De Preter V; Houben E; Windey K; Luypaerts A; Verbeke K
    Eur J Clin Nutr; 2011 Aug; 65(8):959-64. PubMed ID: 21559041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents.
    Nielsen NI; Larsen T; Bjerring M; Ingvartsen KL
    J Dairy Sci; 2005 Sep; 88(9):3186-200. PubMed ID: 16107409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of soluble calcium and lactose on limiting flux and serum protein removal during skim milk microfiltration.
    Adams MC; Hurt EE; Barbano DM
    J Dairy Sci; 2015 Nov; 98(11):7483-97. PubMed ID: 26298759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.