BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22118223)

  • 1. Interaction of the coccolithophore Gephyrocapsa oceanica with its carbon environment: response to a recreated high-CO2 geological past.
    Moolna A; Rickaby RE
    Geobiology; 2012 Jan; 10(1):72-81. PubMed ID: 22118223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification.
    Jin P; Gao K; Beardall J
    Evolution; 2013 Jul; 67(7):1869-78. PubMed ID: 23815645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi.
    Bach LT; Mackinder LCM; Schulz KG; Wheeler G; Schroeder DC; Brownlee C; Riebesell U
    New Phytol; 2013 Jul; 199(1):121-134. PubMed ID: 23496417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton.
    Gafar NA; Eyre BD; Schulz KG
    Sci Rep; 2019 Feb; 9(1):2486. PubMed ID: 30792404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coastal coccolithophore maintains pH homeostasis and switches carbon sources in response to ocean acidification.
    Liu YW; Eagle RA; Aciego SM; Gilmore RE; Ries JB
    Nat Commun; 2018 Jul; 9(1):2857. PubMed ID: 30030435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.
    Sett S; Bach LT; Schulz KG; Koch-Klavsen S; Lebrato M; Riebesell U
    PLoS One; 2014; 9(2):e88308. PubMed ID: 24505472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthesis and calcification of the coccolithophore Emiliania huxleyi are more sensitive to changed levels of light and CO
    Zhang Y; Gao K
    J Photochem Photobiol B; 2021 Apr; 217():112145. PubMed ID: 33735745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decrease in coccolithophore calcification and CO2 since the middle Miocene.
    Bolton CT; Hernández-Sánchez MT; Fuertes MÁ; González-Lemos S; Abrevaya L; Mendez-Vicente A; Flores JA; Probert I; Giosan L; Johnson J; Stoll HM
    Nat Commun; 2016 Jan; 7():10284. PubMed ID: 26762469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of coccolithophore calcification in bioengineering their environment.
    Flynn KJ; Clark DR; Wheeler G
    Proc Biol Sci; 2016 Jun; 283(1833):. PubMed ID: 27358373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological responses of a coccolithophore to multiple environmental drivers.
    Jin P; Liu N; Gao K
    Mar Pollut Bull; 2019 Sep; 146():225-235. PubMed ID: 31426151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
    Reinfelder JR
    Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malformation in coccolithophores in low pH waters: evidences from the eastern Arabian Sea.
    Shetye S; Gazi S; Manglavil A; Shenoy D; Kurian S; Pratihary A; Shirodkar G; Mohan R; Dias A; Naik H; Gauns M; Nandakumar K; Borker S
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):42351-42366. PubMed ID: 36648723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi.
    Hu S; Zhou B; Wang Y; Wang Y; Zhang X; Zhao Y; Zhao X; Tang X
    PLoS One; 2017; 12(8):e0183289. PubMed ID: 28813504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen isotope fractionation is controlled by CO
    Torres-Romero I; Zhang H; Wijker RS; Clark AJ; McLeod RE; Jaggi M; Stoll HM
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2318570121. PubMed ID: 38905238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter- and intraspecific phenotypic plasticity of three phytoplankton species in response to ocean acidification.
    Hattich GS; Listmann L; Raab J; Ozod-Seradj D; Reusch TB; Matthiessen B
    Biol Lett; 2017 Feb; 13(2):. PubMed ID: 28148833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis.
    Furla P; Galgani I; Durand I; Allemand D
    J Exp Biol; 2000 Nov; 203(Pt 22):3445-57. PubMed ID: 11044383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.
    Jin P; Gao K; Villafañe VE; Campbell DA; Helbling EW
    Plant Physiol; 2013 Aug; 162(4):2084-94. PubMed ID: 23749851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi.
    Feng Y; Roleda MY; Armstrong E; Summerfield TC; Law CS; Hurd CL; Boyd PW
    Glob Chang Biol; 2020 Oct; 26(10):5630-5645. PubMed ID: 32597547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological regulation of carbon fixation in the photosynthesis and calcification of coccolithophorids.
    Shiraiwa Y
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):775-83. PubMed ID: 14662302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.