These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 22118406)

  • 1. Thymic and peripheral differentiation of regulatory T cells.
    Lee HM; Bautista JL; Hsieh CS
    Adv Immunol; 2011; 112():25-71. PubMed ID: 22118406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells.
    Aschenbrenner K; D'Cruz LM; Vollmann EH; Hinterberger M; Emmerich J; Swee LK; Rolink A; Klein L
    Nat Immunol; 2007 Apr; 8(4):351-8. PubMed ID: 17322887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High TCR diversity ensures optimal function and homeostasis of Foxp3+ regulatory T cells.
    Föhse L; Suffner J; Suhre K; Wahl B; Lindner C; Lee CW; Schmitz S; Haas JD; Lamprecht S; Koenecke C; Bleich A; Hämmerling GJ; Malissen B; Suerbaum S; Förster R; Prinz I
    Eur J Immunol; 2011 Nov; 41(11):3101-13. PubMed ID: 21932448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-Rel: a pioneer in directing regulatory T-cell lineage commitment?
    Hori S
    Eur J Immunol; 2010 Mar; 40(3):664-7. PubMed ID: 20162555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural and induced T CD4+CD25+FOXP3+ regulatory T cells.
    Chatenoud L
    Methods Mol Biol; 2011; 677():3-13. PubMed ID: 20941599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development.
    Ohkura N; Hamaguchi M; Morikawa H; Sugimura K; Tanaka A; Ito Y; Osaki M; Tanaka Y; Yamashita R; Nakano N; Huehn J; Fehling HJ; Sparwasser T; Nakai K; Sakaguchi S
    Immunity; 2012 Nov; 37(5):785-99. PubMed ID: 23123060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical co-stimulatory pathways in the stability of Foxp3+ Treg cell homeostasis in Type I diabetes.
    Kornete M; Piccirillo CA
    Autoimmun Rev; 2011 Dec; 11(2):104-11. PubMed ID: 21875694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymic production of human FOXP3(+) regulatory T cells is stable but does not correlate with peripheral FOXP3 expression.
    Tuovinen H; Laurinolli TT; Rossi LH; Pekkarinen PT; Mattila I; Arstila TP
    Immunol Lett; 2008 May; 117(2):146-53. PubMed ID: 18321596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of peripheral tolerance and immune regulation mediated by Treg.
    Sakaguchi S; Wing K; Yamaguchi T
    Eur J Immunol; 2009 Sep; 39(9):2331-6. PubMed ID: 19662638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting regulatory T cells in type 1 diabetes.
    Zhang Y; Bandala-Sanchez E; Harrison LC
    Curr Opin Endocrinol Diabetes Obes; 2012 Aug; 19(4):271-8. PubMed ID: 22732485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent thymic origin, differentiation, and turnover of regulatory T cells.
    Mabarrack NH; Turner NL; Mayrhofer G
    J Leukoc Biol; 2008 Nov; 84(5):1287-97. PubMed ID: 18682578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic control of thymic Treg-cell development.
    Kitagawa Y; Ohkura N; Sakaguchi S
    Eur J Immunol; 2015 Jan; 45(1):11-6. PubMed ID: 25348287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thymic commitment of regulatory T cells is a pathway of TCR-dependent selection that isolates repertoires undergoing positive or negative selection.
    Coutinho A; Caramalho I; Seixas E; Demengeot J
    Curr Top Microbiol Immunol; 2005; 293():43-71. PubMed ID: 15981475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrathymic generation of regulatory T cells--chances and challenges for prevention of autoimmune disease.
    Daniel C; von Boehmer H
    Adv Immunol; 2011; 112():177-213. PubMed ID: 22118409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thymic regulatory T cells.
    Maggi E; Cosmi L; Liotta F; Romagnani P; Romagnani S; Annunziato F
    Autoimmun Rev; 2005 Nov; 4(8):579-86. PubMed ID: 16214099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired T cell receptor signaling in Foxp3+ CD4 T cells.
    Carson BD; Ziegler SF
    Ann N Y Acad Sci; 2007 Apr; 1103():167-78. PubMed ID: 17376831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of regulatory T-cell lineage.
    Hori S
    Adv Immunol; 2011; 112():1-24. PubMed ID: 22118405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naturally occurring self-reactive CD4+CD25+ regulatory T cells: universal immune code.
    Pakravan N; Hassan AT; Hassan ZM
    Cell Mol Immunol; 2007 Jun; 4(3):197-201. PubMed ID: 17601373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD4+Foxp3+ regulatory T cells in the control of autoimmunity: in vivo veritas.
    Piccirillo CA; d'Hennezel E; Sgouroudis E; Yurchenko E
    Curr Opin Immunol; 2008 Dec; 20(6):655-62. PubMed ID: 18926906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced and thymus-derived Foxp3⁺ regulatory T cells share a common niche.
    Huang YJ; Haist V; Baumgärtner W; Föhse L; Prinz I; Suerbaum S; Floess S; Huehn J
    Eur J Immunol; 2014 Feb; 44(2):460-8. PubMed ID: 24170313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.