These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22118705)

  • 1. Treating diabetes today: a matter of selectivity of sulphonylureas.
    Seino S; Takahashi H; Takahashi T; Shibasaki T
    Diabetes Obes Metab; 2012 Jan; 14 Suppl 1():9-13. PubMed ID: 22118705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells.
    Kang G; Chepurny OG; Malester B; Rindler MJ; Rehmann H; Bos JL; Schwede F; Coetzee WA; Holz GG
    J Physiol; 2006 Jun; 573(Pt 3):595-609. PubMed ID: 16613879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shortcomings of current models of glucose-induced insulin secretion.
    Henquin JC; Nenquin M; Ravier MA; Szollosi A
    Diabetes Obes Metab; 2009 Nov; 11 Suppl 4():168-79. PubMed ID: 19817799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epac2: a sulfonylurea receptor?
    Rehmann H
    Biochem Soc Trans; 2012 Feb; 40(1):6-10. PubMed ID: 22260657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pharmacogenetics of insulin secretagogue antidiabetics].
    Winkler G; Gerô L
    Orv Hetil; 2011 Oct; 152(41):1651-60. PubMed ID: 21959939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperation between cAMP signalling and sulfonylurea in insulin secretion.
    Shibasaki T; Takahashi T; Takahashi H; Seino S
    Diabetes Obes Metab; 2014 Sep; 16 Suppl 1():118-25. PubMed ID: 25200305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K(ATP) channel pharmacogenomics: from bench to bedside.
    Sattiraju S; Reyes S; Kane GC; Terzic A
    Clin Pharmacol Ther; 2008 Feb; 83(2):354-7. PubMed ID: 17957187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential selectivity of insulin secretagogues: mechanisms, clinical implications, and drug interactions.
    Gribble FM; Reimann F
    J Diabetes Complications; 2003; 17(2 Suppl):11-5. PubMed ID: 12623163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in tissue selectivity amongst insulin secretagogues: a systematic review.
    Abdelmoneim AS; Hasenbank SE; Seubert JM; Brocks DR; Light PE; Simpson SH
    Diabetes Obes Metab; 2012 Feb; 14(2):130-8. PubMed ID: 21923736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin secretagogues, sulfonylurea receptors and K(ATP) channels.
    Bryan J; Crane A; Vila-Carriles WH; Babenko AP; Aguilar-Bryan L
    Curr Pharm Des; 2005; 11(21):2699-716. PubMed ID: 16101450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis.
    Shibasaki T; Sunaga Y; Fujimoto K; Kashima Y; Seino S
    J Biol Chem; 2004 Feb; 279(9):7956-61. PubMed ID: 14660679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Molecular basis of oral hypoglycemic sulfonylurea action].
    Owecki M; Horst-Sikorska W; Sowiński J
    Pol Merkur Lekarski; 2003 Nov; 15(89):445-8. PubMed ID: 14969140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-sensitive potassium channelopathies: focus on insulin secretion.
    Ashcroft FM
    J Clin Invest; 2005 Aug; 115(8):2047-58. PubMed ID: 16075046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitation of ß-cell K(ATP) channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac.
    Leech CA; Dzhura I; Chepurny OG; Schwede F; Genieser HG; Holz GG
    Islets; 2010; 2(2):72-81. PubMed ID: 20428467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-sensitive potassium channels--neonatal diabetes mellitus and beyond.
    Sperling MA
    N Engl J Med; 2006 Aug; 355(5):507-10. PubMed ID: 16885555
    [No Abstract]   [Full Text] [Related]  

  • 16. Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP.
    Jin JY; Park SH; Bae JH; Cho HC; Lim JG; Park WS; Han J; Lee JH; Song DK
    Pharmacol Res; 2007 Sep; 56(3):237-47. PubMed ID: 17656102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of K(ATP) channel by 17β-estradiol in pancreatic β-cells.
    Soriano S; Ripoll C; Fuentes E; Gonzalez A; Alonso-Magdalena P; Ropero AB; Quesada I; Nadal A
    Steroids; 2011 Aug; 76(9):856-60. PubMed ID: 21470558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells.
    Eliasson L; Ma X; Renström E; Barg S; Berggren PO; Galvanovskis J; Gromada J; Jing X; Lundquist I; Salehi A; Sewing S; Rorsman P
    J Gen Physiol; 2003 Mar; 121(3):181-97. PubMed ID: 12601083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways.
    Kajioka S; Nakayama S; Asano H; Seki N; Naito S; Brading AF
    J Pharmacol Exp Ther; 2008 Oct; 327(1):114-23. PubMed ID: 18596222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntaxin 1A regulates surface expression of beta-cell ATP-sensitive potassium channels.
    Chen PC; Bruederle CE; Gaisano HY; Shyng SL
    Am J Physiol Cell Physiol; 2011 Mar; 300(3):C506-16. PubMed ID: 21209369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.