These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 22118849)
1. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Wei YT; Wu SC; Yang SW; Che CH; Lien HL; Huang DH J Hazard Mater; 2012 Apr; 211-212():373-80. PubMed ID: 22118849 [TBL] [Abstract][Full Text] [Related]
2. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Wei YT; Wu SC; Chou CM; Che CH; Tsai SM; Lien HL Water Res; 2010 Jan; 44(1):131-40. PubMed ID: 19800096 [TBL] [Abstract][Full Text] [Related]
3. Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride. Huang CC; Lo SL; Tsai SM; Lien HL J Environ Monit; 2011 Sep; 13(9):2406-12. PubMed ID: 21850296 [TBL] [Abstract][Full Text] [Related]
4. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study. Wang SY; Chen SC; Lin YC; Kuo YC; Chen JY; Kao CM Chemosphere; 2016 Oct; 160():216-29. PubMed ID: 27376861 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Le NB; Coleman NV Biodegradation; 2011 Nov; 22(6):1095-108. PubMed ID: 21365473 [TBL] [Abstract][Full Text] [Related]
6. Aerobic bioremediation of 1,2 dichloroethane and vinyl chloride at field scale. Davis GB; Patterson BM; Johnston CD J Contam Hydrol; 2009 Jun; 107(1-2):91-100. PubMed ID: 19428139 [TBL] [Abstract][Full Text] [Related]
7. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Bennett P; He F; Zhao D; Aiken B; Feldman L J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350 [TBL] [Abstract][Full Text] [Related]
8. Reactive iron barriers: a niche enabling microbial dehalorespiration of 1,2-dichloroethane. Zemb O; Lee M; Low A; Manefield M Appl Microbiol Biotechnol; 2010 Sep; 88(1):319-25. PubMed ID: 20607230 [TBL] [Abstract][Full Text] [Related]
9. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F; Zhao D; Paul C Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501 [TBL] [Abstract][Full Text] [Related]
10. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron. Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE). Chang YC; Huang SC; Chen KF Water Sci Technol; 2014; 69(11):2357-63. PubMed ID: 24901632 [TBL] [Abstract][Full Text] [Related]
12. In-situ biodegradation potential of 1,2-DCA and VC at sites with different hydrogeological settings. Nobre RCM; Nobre MMM; Campos TMP; Ogles D J Hazard Mater; 2017 Oct; 340():417-426. PubMed ID: 28743073 [TBL] [Abstract][Full Text] [Related]
13. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426 [TBL] [Abstract][Full Text] [Related]
14. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Kirschling TL; Gregory KB; Minkley EG; Lowry GV; Tilton RD Environ Sci Technol; 2010 May; 44(9):3474-80. PubMed ID: 20350000 [TBL] [Abstract][Full Text] [Related]
15. [Microbial reductive dechlorination of TCE with nano iron serving as electron donor]. Xiu ZM; Li TL; Jin ZH; Alvarez PJ Huan Jing Ke Xue; 2009 Jun; 30(6):1791-6. PubMed ID: 19662870 [TBL] [Abstract][Full Text] [Related]
16. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Zhang M; He F; Zhao D; Hao X Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362 [TBL] [Abstract][Full Text] [Related]
17. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. Kim H; Hong HJ; Jung J; Kim SH; Yang JW J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289 [TBL] [Abstract][Full Text] [Related]
18. Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. Koenig JC; Boparai HK; Lee MJ; O'Carroll DM; Barnes RJ; Manefield MJ J Hazard Mater; 2016 May; 308():106-12. PubMed ID: 26808236 [TBL] [Abstract][Full Text] [Related]
19. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Zhang X; Lin S; Chen Z; Megharaj M; Naidu R Water Res; 2011 May; 45(11):3481-8. PubMed ID: 21529878 [TBL] [Abstract][Full Text] [Related]
20. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI. Patterson BM; Lee M; Bastow TP; Wilson JT; Donn MJ; Furness A; Goodwin B; Manefield M J Contam Hydrol; 2016 May; 188():1-11. PubMed ID: 26934432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]