These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 22119024)
1. Application of mineral liberation analysis in studying micro-sedimentological structures within sulfide mine tailings and their effect on hardpan formation. Redwan M; Rammlmair D; Meima JA Sci Total Environ; 2012 Jan; 414():480-93. PubMed ID: 22119024 [TBL] [Abstract][Full Text] [Related]
2. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124 [TBL] [Abstract][Full Text] [Related]
3. The impact of hardpans and cemented layers on oxygen diffusivity in mining waste heaps: diffusion experiments and modelling studies. Kohfahl C; Graupner T; Fetzer C; Holzbecher E; Pekdeger A Sci Total Environ; 2011 Aug; 409(17):3197-205. PubMed ID: 21632092 [TBL] [Abstract][Full Text] [Related]
4. The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps: a field study of the Halsbrücke lead-zinc mine tailings (Germany). Kohfahl C; Graupner T; Fetzer C; Pekdeger A Sci Total Environ; 2010 Nov; 408(23):5932-9. PubMed ID: 20850166 [TBL] [Abstract][Full Text] [Related]
5. Micromorphology and environmental behavior of oxide deposit layers in sulfide-rich tailings in Tongling, Anhui Province, China. Zheng L; Qiu Z; Tang Q; Li Y Environ Pollut; 2019 Aug; 251():484-492. PubMed ID: 31103008 [TBL] [Abstract][Full Text] [Related]
6. Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings. Liu Y; Wu S; Nguyen TAH; Southam G; Chan TS; Lu YR; Huang L Environ Pollut; 2018 Nov; 242(Pt B):1500-1509. PubMed ID: 30144723 [TBL] [Abstract][Full Text] [Related]
8. The role of hardpan formation on the reactivity of sulfidic mine tailings: A case study at Joutel mine (Québec). Elghali A; Benzaazoua M; Bussière B; Kennedy C; Parwani R; Graham S Sci Total Environ; 2019 Mar; 654():118-128. PubMed ID: 30439688 [TBL] [Abstract][Full Text] [Related]
9. The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling. Othmani MA; Souissi F; Bouzahzah H; Bussière B; da Silva EF; Benzaazoua M Environ Sci Pollut Res Int; 2015 Feb; 22(4):2877-90. PubMed ID: 25220771 [TBL] [Abstract][Full Text] [Related]
10. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania. Sima M; Dold B; Frei L; Senila M; Balteanu D; Zobrist J J Hazard Mater; 2011 May; 189(3):624-39. PubMed ID: 21316846 [TBL] [Abstract][Full Text] [Related]
11. Zinc and lead encapsulated in amorphous ferric cements within hardpans in situ formed from sulfidic Cu-Pb-Zn tailings. Liu Y; Wu S; Southam G; Nguyen TAH; Kopittke PM; Paterson DJ; Huang L Environ Pollut; 2019 Sep; 252(Pt B):1106-1116. PubMed ID: 31252108 [TBL] [Abstract][Full Text] [Related]
12. Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement. Elghali A; Benzaazoua M; Bouzahzah H; Abdelmoula M; Dynes JJ; Jamieson HE Sci Total Environ; 2021 Aug; 784():147105. PubMed ID: 33905938 [TBL] [Abstract][Full Text] [Related]
13. Current approaches for mitigating acid mine drainage. Sahoo PK; Kim K; Equeenuddin SM; Powell MA Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128 [TBL] [Abstract][Full Text] [Related]
14. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation. Nason P; Johnson RH; Neuschütz C; Alakangas L; Öhlander B J Hazard Mater; 2014 Feb; 267():245-54. PubMed ID: 24462894 [TBL] [Abstract][Full Text] [Related]
15. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations. Zanko LM; Niles HB; Oreskovich JA Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S51-65. PubMed ID: 18166256 [TBL] [Abstract][Full Text] [Related]
16. An engineered cover system for mine tailings using a hardpan layer: a solidification/stabilization method for layer and field performance evaluation. Ahn JS; Song H; Yim GJ; Ji SW; Kim JG J Hazard Mater; 2011 Dec; 197():153-60. PubMed ID: 21974852 [TBL] [Abstract][Full Text] [Related]
17. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability. Banning A; Rüde TR; Dölling B J Hazard Mater; 2013 Nov; 262():905-14. PubMed ID: 23280400 [TBL] [Abstract][Full Text] [Related]
19. Metal mobilization under alkaline conditions in ash-covered tailings. Lu J; Alakangas L; Wanhainen C J Environ Manage; 2014 Jun; 139():38-49. PubMed ID: 24681363 [TBL] [Abstract][Full Text] [Related]
20. Integration of field measurements and reactive transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment. Brookfield AE; Blowes DW; Mayer KU J Contam Hydrol; 2006 Nov; 88(1-2):1-22. PubMed ID: 16844261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]