These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 22119049)

  • 41. The development of PM emission factor for small incinerators and boilers.
    Yoo JI; Kim KH; Jang HN; Seo YC; Seok KS; Hong JH; Jang M
    Environ Technol; 2002 Dec; 23(12):1425-33. PubMed ID: 12523513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modelling heavy metal fluxes from traffic into the environment.
    Steiner M; Boller M; Schulz T; Pronk W
    J Environ Monit; 2007 Aug; 9(8):847-54. PubMed ID: 17671666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low SO2 emission from CFB co-firing MSW and bituminous.
    Lu QG; Li ZW; Na YJ; Ba SL; Sun YK; He J
    J Environ Sci (China); 2004; 16(5):821-4. PubMed ID: 15559820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of air pollution control residues of MSW incineration plant in Shanghai.
    He PJ; Zhang H; Zhang CG; Lee DJ
    J Hazard Mater; 2004 Dec; 116(3):229-37. PubMed ID: 15601616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heavy metal migration during electroremediation of fly ash from different wastes--modelling.
    Lima AT; Rodrigues PC; Mexia JT
    J Hazard Mater; 2010 Mar; 175(1-3):366-71. PubMed ID: 19883974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of atmospheric heavy metal pollution in Canakkale and Balikesir provinces using lichen (Cladonia rangiformis) as a bioindicator.
    Cayir A; Coskun M; Coskun M
    Bull Environ Contam Toxicol; 2007 Oct; 79(4):367-70. PubMed ID: 17639314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash.
    Rendek E; Ducom G; Germain P
    J Hazard Mater; 2006 Jan; 128(1):73-9. PubMed ID: 16139424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing the APC residue washing process to minimize the release of chloride and heavy metals.
    Chimenos JM; Fernández AI; Cervantes A; Miralles L; Fernández MA; Espiell F
    Waste Manag; 2005; 25(7):686-93. PubMed ID: 16009302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.
    Ho TC; Chuang TC; Chelluri S; Lee Y; Hopper JR
    Waste Manag; 2001; 21(5):435-41. PubMed ID: 11280984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator.
    Duan F; Chyang C; Chin Y; Tso J
    J Environ Sci (China); 2013 Feb; 25(2):335-9. PubMed ID: 23596954
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor.
    Yang Z; Zhang S; Liu L; Li X; Chen H; Yang H; Wang X
    Bioresour Technol; 2012 Apr; 110():595-602. PubMed ID: 22374152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dried sludge reburning blended with calcium magnesium acetate addition in a fluidized bed combustor.
    Zhang LH; Li Z; Yang SM; Duan F
    Waste Manag; 2021 Mar; 123():120-130. PubMed ID: 33582399
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A study on fluidized bed combustion characteristics of corncob in three different combustion modes.
    Chyang CS; Duan F; Lin SM; Tso J
    Bioresour Technol; 2012 Jul; 116():184-9. PubMed ID: 22609674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of Operating Conditions on the Formation of Heavy Metal Compounds During Incineration.
    Wey MY; Su JL; Chen JC
    J Air Waste Manag Assoc; 1999 Apr; 49(4):444-453. PubMed ID: 28060648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Behavior of toxic metals and radionuclides during molten salt oxidation of chlorinated plastics.
    Yang HC; Cho YJ; Eun HC; Yoo JH; Kim JH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(6):1601-16. PubMed ID: 15244340
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The adsorption of heavy metals by different sorbents under various incineration conditions.
    Chen JC; Wey MY; Lin YC
    Chemosphere; 1998 Dec; 37(13):2617-25. PubMed ID: 9839395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance evaluation of laser-induced breakdown spectrometry as a multimetal continuous emission monitor.
    Zhang H; Yueh FY; Singh JP
    J Air Waste Manag Assoc; 2001 May; 51(5):681-7. PubMed ID: 11355455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mineral and Heavy Metal Composition of Oil Shale Ash from Oxyfuel Combustion.
    Konist A; Neshumayev D; Baird ZS; Anthony EJ; Maasikmets M; Järvik O
    ACS Omega; 2020 Dec; 5(50):32498-32506. PubMed ID: 33376887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using Iron Ore Ultra-Fines for Hydrogen-Based Fluidized Bed Direct Reduction-A Mathematical Evaluation.
    Wolfinger T; Spreitzer D; Schenk J
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683241
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mining association rules between the granulation feasibility and physicochemical properties of aqueous extracts from Chinese herbal medicine in fluidized bed granulation.
    Fu S; Luo Y; Liu Y; Liao Q; Kong S; Yang A; Lin L; Li H
    Math Biosci Eng; 2023 Oct; 20(11):19065-19085. PubMed ID: 38052591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.