These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22119050)

  • 1. Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment.
    Ibarrola R; Shackley S; Hammond J
    Waste Manag; 2012 May; 32(5):859-68. PubMed ID: 22119050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.
    Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J
    Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore.
    Arora S; Jung J; Liu M; Li X; Goel A; Chen J; Song S; Anderson C; Chen D; Leong K; Lim SH; Fong SL; Ghosh S; Lin A; Kua HW; Tan HTW; Dai Y; Wang CH
    Sci Total Environ; 2021 Aug; 781():146573. PubMed ID: 33798876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composting, anaerobic digestion and biochar production in Ghana. Environmental-economic assessment in the context of voluntary carbon markets.
    Galgani P; van der Voet E; Korevaar G
    Waste Manag; 2014 Dec; 34(12):2454-65. PubMed ID: 25204615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical, economical, and climate-related aspects of biochar production technologies: a literature review.
    Meyer S; Glaser B; Quicker P
    Environ Sci Technol; 2011 Nov; 45(22):9473-83. PubMed ID: 21961528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.
    Colazo AB; Sánchez A; Font X; Colón J
    Waste Manag; 2015 Sep; 43():84-97. PubMed ID: 26123979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle impact assessment of various waste conversion technologies.
    Khoo HH
    Waste Manag; 2009 Jun; 29(6):1892-900. PubMed ID: 19157835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and chemical characterization of waste wood derived biochars.
    Yargicoglu EN; Sadasivam BY; Reddy KR; Spokas K
    Waste Manag; 2015 Feb; 36():256-68. PubMed ID: 25464942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value-added performance of processed cardboard and farm breeding compost by pyrolysis.
    Ghorbel L; Rouissi T; Brar SK; López-González D; Ramirez AA; Godbout S
    Waste Manag; 2015 Apr; 38():164-73. PubMed ID: 25683201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy.
    Li W; Dang Q; Brown RC; Laird D; Wright MM
    Bioresour Technol; 2017 Oct; 241():959-968. PubMed ID: 28637163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes.
    Dunnigan L; Morton BJ; Ashman PJ; Zhang X; Kwong CW
    Waste Manag; 2018 Jul; 77():59-66. PubMed ID: 30008415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.
    Evangelisti S; Tagliaferri C; Clift R; Lettieri P; Taylor R; Chapman C
    Waste Manag; 2015 Sep; 43():485-96. PubMed ID: 26116008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical review on sustainable biochar system through gasification: Energy and environmental applications.
    You S; Ok YS; Chen SS; Tsang DCW; Kwon EE; Lee J; Wang CH
    Bioresour Technol; 2017 Dec; 246():242-253. PubMed ID: 28705422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the effects of carbon dioxide atmosphere on the production of biochar derived from slow pyrolysis of organic agro-urban waste.
    Premchand P; Demichelis F; Chiaramonti D; Bensaid S; Fino D
    Waste Manag; 2023 Dec; 172():308-319. PubMed ID: 37939602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prospective use of biochar as adsorption matrix - A review from a lifecycle perspective.
    Moreira MT; Noya I; Feijoo G
    Bioresour Technol; 2017 Dec; 246():135-141. PubMed ID: 28843643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.
    Dong J; Tang Y; Nzihou A; Chi Y; Weiss-Hortala E; Ni M
    Sci Total Environ; 2018 Jun; 626():744-753. PubMed ID: 29396338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide.
    Beagle E; Wang Y; Bell D; Belmont E
    Bioresour Technol; 2018 Mar; 251():31-39. PubMed ID: 29257994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites.
    Das O; Sarmah AK; Bhattacharyya D
    Waste Manag; 2015 Apr; 38():132-40. PubMed ID: 25677179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet wastes to bioenergy and biochar: A critical review with future perspectives.
    Li J; Li L; Suvarna M; Pan L; Tabatabaei M; Ok YS; Wang X
    Sci Total Environ; 2022 Apr; 817():152921. PubMed ID: 35007594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and socioeconomic impacts of utilizing waste for biochar in rural areas in Indonesia--a systems perspective.
    Sparrevik M; Lindhjem H; Andria V; Fet AM; Cornelissen G
    Environ Sci Technol; 2014 May; 48(9):4664-71. PubMed ID: 24678863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.