These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22119273)

  • 1. Metabolic network reconstruction: advances in in silico interpretation of analytical information.
    Chen N; del Val IJ; Kyriakopoulos S; Polizzi KM; Kontoravdi C
    Curr Opin Biotechnol; 2012 Feb; 23(1):77-82. PubMed ID: 22119273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
    Soh KC; Miskovic L; Hatzimanikatis V
    FEMS Yeast Res; 2012 Mar; 12(2):129-43. PubMed ID: 22129227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic flux distributions: genetic information, computational predictions, and experimental validation.
    Blank LM; Kuepfer L
    Appl Microbiol Biotechnol; 2010 May; 86(5):1243-55. PubMed ID: 20232063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current state and challenges for dynamic metabolic modeling.
    Vasilakou E; Machado D; Theorell A; Rocha I; Nöh K; Oldiges M; Wahl SA
    Curr Opin Microbiol; 2016 Oct; 33():97-104. PubMed ID: 27472025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary programming as a platform for in silico metabolic engineering.
    Patil KR; Rocha I; Förster J; Nielsen J
    BMC Bioinformatics; 2005 Dec; 6():308. PubMed ID: 16375763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae.
    Alves R; Sorribas A
    BMC Syst Biol; 2007 Jan; 1():10. PubMed ID: 17408500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Merging multiple omics datasets in silico: statistical analyses and data interpretation.
    Arakawa K; Tomita M
    Methods Mol Biol; 2013; 985():459-70. PubMed ID: 23417818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks.
    Averesch NJH; Martínez VS; Nielsen LK; Krömer JO
    ACS Synth Biol; 2018 Feb; 7(2):490-509. PubMed ID: 29237121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale metabolic models of Saccharomyces cerevisiae.
    Nookaew I; Olivares-Hernández R; Bhumiratana S; Nielsen J
    Methods Mol Biol; 2011; 759():445-63. PubMed ID: 21863502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.
    Kim HU; Charusanti P; Lee SY; Weber T
    Nat Prod Rep; 2016 Aug; 33(8):933-41. PubMed ID: 27072921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modelling of metabolism.
    Gombert AK; Nielsen J
    Curr Opin Biotechnol; 2000 Apr; 11(2):180-6. PubMed ID: 10753761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction.
    Heavner BD; Price ND
    PLoS Comput Biol; 2015 Nov; 11(11):e1004530. PubMed ID: 26566239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of mathematical tools for metabolic design of microbial ethanol production.
    Hatzimanikatis V; Emmerling M; Sauer U; Bailey JE
    Biotechnol Bioeng; 1998 Apr 20-May 5; 58(2-3):154-61. PubMed ID: 10191385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data.
    Edwards JS; Ibarra RU; Palsson BO
    Nat Biotechnol; 2001 Feb; 19(2):125-30. PubMed ID: 11175725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-objective optimization of enzyme manipulations in metabolic networks considering resilience effects.
    Wu WH; Wang FS; Chang MS
    BMC Syst Biol; 2011 Sep; 5():145. PubMed ID: 21929795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae.
    Pornkamol U; Franzen CJ
    Biotechnol J; 2015 Aug; 10(8):1248-58. PubMed ID: 25880365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production.
    Gruchattka E; Kayser O
    PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.