These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 22119304)

  • 1. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles.
    Liang Q; Zhao D
    J Hazard Mater; 2014 Apr; 271():16-23. PubMed ID: 24584068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies.
    Han B; Zhang M; Zhao D
    Environ Pollut; 2017 Apr; 223():238-246. PubMed ID: 28108162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles.
    Han B; Zhang M; Zhao D; Feng Y
    Water Res; 2015 Mar; 70():288-99. PubMed ID: 25543239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar.
    Zhang R; Zhang N; Fang Z
    Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.
    Lin YH; Tseng HH; Wey MY; Lin MD
    Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling phosphate releasing from poultry litter using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Zhao D
    Sci Total Environ; 2016 Jan; 542(Pt B):1020-9. PubMed ID: 26442720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y; Fang Z; Kang Y; Tsang EP
    J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead.
    Qi J; Zhang G; Li H
    Bioresour Technol; 2015 Oct; 193():243-9. PubMed ID: 26141284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles.
    Wang Q; Qian H; Yang Y; Zhang Z; Naman C; Xu X
    J Contam Hydrol; 2010 May; 114(1-4):35-42. PubMed ID: 20304518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selected Fe and Mn (nano)oxides as perspective amendments for the stabilization of As in contaminated soils.
    Michálková Z; Komárek M; Veselská V; Číhalová S
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10841-10854. PubMed ID: 26895725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and efficient remediation of antimony-contaminated surface water and field soil using alumina supported Fe-Mn binary oxide.
    Gong Y; Bai Y; Ye P; Li H
    Chemosphere; 2024 Sep; 364():143165. PubMed ID: 39181457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive Removal of Selenate in Water Using Stabilized Zero-Valent Iron Nanoparticles.
    Liu H; Cai Z; Zhao X; Zhao D; Qian T; Bozack M; Zhang M
    Water Environ Res; 2016 Aug; 88(8):694-703. PubMed ID: 27456140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.
    Van Koetsem F; Van Havere L; Du Laing G
    J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Stabilized Fe⁻Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors.
    Ning Q; Yin Z; Liu Y; Tan X; Zeng G; Jiang L; Liu S; Tian S; Liu N; Wang X
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30314268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles.
    Xiong Z; He F; Zhao D; Barnett MO
    Water Res; 2009 Dec; 43(20):5171-9. PubMed ID: 19748651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.