BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22119311)

  • 1. Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh.
    Li D; Chen L; Xu D; Zhang X; Ye N; Chen F; Chen S
    Bioresour Technol; 2012 Jan; 104():737-42. PubMed ID: 22119311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.
    Pattiya A
    Bioresour Technol; 2011 Jan; 102(2):1959-67. PubMed ID: 20864338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae.
    Bae YJ; Ryu C; Jeon JK; Park J; Suh DJ; Suh YW; Chang D; Park YK
    Bioresour Technol; 2011 Feb; 102(3):3512-20. PubMed ID: 21129955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils.
    Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y
    Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste.
    Cao JP; Xiao XB; Zhang SY; Zhao XY; Sato K; Ogawa Y; Wei XY; Takarada T
    Bioresour Technol; 2011 Jan; 102(2):2009-15. PubMed ID: 20943376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.
    Jung SH; Kim SJ; Kim JS
    Bioresour Technol; 2012 Jun; 114():670-6. PubMed ID: 22513256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal liquefaction of low-lipid algae Nannochloropsis sp. and Sargassum sp.: Effect of feedstock composition and temperature.
    He S; Zhao M; Wang J; Cheng Z; Yan B; Chen G
    Sci Total Environ; 2020 Apr; 712():135677. PubMed ID: 31791797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.
    Chen WT; Zhang Y; Zhang J; Yu G; Schideman LC; Zhang P; Minarick M
    Bioresour Technol; 2014; 152():130-9. PubMed ID: 24287452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of bio-oils by hydrothermal liquefaction (HTL) of penicillin fermentation residue (PR): Optimization of conditions and mechanistic studies.
    Hong C; Wang Z; Si Y; Li Z; Xing Y; Hu J; Li Y
    Sci Total Environ; 2021 Mar; 761():143216. PubMed ID: 33213924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on hydrothermal liquefaction of antibiotic residues for bio-oil in ethanol-water system.
    Yang J; Hong C; Li Z; Xing Y; Zhao X
    Waste Manag; 2021 Feb; 120():164-174. PubMed ID: 33307361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition.
    Anastasakis K; Ross AB
    Bioresour Technol; 2011 Apr; 102(7):4876-83. PubMed ID: 21316946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor.
    Thangalazhy-Gopakumar S; Adhikari S; Ravindran H; Gupta RB; Fasina O; Tu M; Fernando SD
    Bioresour Technol; 2010 Nov; 101(21):8389-95. PubMed ID: 20558057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upgrading of crude algal bio-oil in supercritical water.
    Duan P; Savage PE
    Bioresour Technol; 2011 Jan; 102(2):1899-906. PubMed ID: 20801646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery.
    Chen J
    Bioresour Technol; 2018 Oct; 265():320-327. PubMed ID: 29909362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of aqueous phase circulation and catalysts on hydrothermal liquefaction (HTL) of penicillin residue (PR): Characteristics of the aqueous phase, solid residue and bio oil.
    Hong C; Wang Z; Si Y; Li Z; Xing Y; Hu J; Li Y
    Sci Total Environ; 2021 Jul; 776():145596. PubMed ID: 33652310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal liquefaction of Ulva prolifera macroalgae and the influence of base catalysts on products.
    Yan L; Wang Y; Li J; Zhang Y; Ma L; Fu F; Chen B; Liu H
    Bioresour Technol; 2019 Nov; 292():121286. PubMed ID: 31386946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of poultry wastes into energy feedstocks.
    Kantarli IC; Kabadayi A; Ucar S; Yanik J
    Waste Manag; 2016 Oct; 56():530-9. PubMed ID: 27440220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.
    Rajamohan S; Kasimani R
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9523-9538. PubMed ID: 29354857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.
    Kabir G; Mohd Din AT; Hameed BH
    Bioresour Technol; 2017 Oct; 241():563-572. PubMed ID: 28601774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.