BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 22119426)

  • 21. Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features.
    Giaccone G; Morbin M; Moda F; Botta M; Mazzoleni G; Uggetti A; Catania M; Moro ML; Redaelli V; Spagnoli A; Rossi RS; Salmona M; Di Fede G; Tagliavini F
    Acta Neuropathol; 2010 Dec; 120(6):803-12. PubMed ID: 20842367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the origin of Alzheimer's disease. Trials and tribulations of the amyloid hypothesis.
    Castello MA; Soriano S
    Ageing Res Rev; 2014 Jan; 13():10-2. PubMed ID: 24252390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Presenilin 1 regulates the processing of beta-amyloid precursor protein C-terminal fragments and the generation of amyloid beta-protein in endoplasmic reticulum and Golgi.
    Xia W; Zhang J; Ostaszewski BL; Kimberly WT; Seubert P; Koo EH; Shen J; Selkoe DJ
    Biochemistry; 1998 Nov; 37(47):16465-71. PubMed ID: 9843412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond pathology: APP, brain development and Alzheimer's disease.
    Soldano A; Hassan BA
    Curr Opin Neurobiol; 2014 Aug; 27():61-7. PubMed ID: 24632309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cerebrovascular microRNA Expression Profile During Early Development of Alzheimer's Disease in a Mouse Model.
    Chum PP; Hakim MA; Behringer EJ
    J Alzheimers Dis; 2022; 85(1):91-113. PubMed ID: 34776451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic Regulation of Amyloid-beta Metabolism in Alzheimer's Disease.
    He C; Huang ZS; Yu CC; Wang HH; Zhou H; Kong LH
    Curr Med Sci; 2020 Dec; 40(6):1022-1030. PubMed ID: 33428129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. APP processing and the APP-KPI domain involvement in the amyloid cascade.
    Menéndez-González M; Pérez-Pinera P; Martínez-Rivera M; Calatayud MT; Blázquez Menes B
    Neurodegener Dis; 2005; 2(6):277-83. PubMed ID: 16909010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A complex crosstalk between polymorphic microRNA target sites and AD prognosis.
    Mallick B; Ghosh Z
    RNA Biol; 2011; 8(4):665-73. PubMed ID: 21659796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerebrovascular miRNAs correlate with the clearance of Aβ through perivascular route in younger 3xTg-AD mice.
    Fu L; Jiang G; Weng H; Dick GM; Chang Y; Kassab GS
    Brain Pathol; 2020 Jan; 30(1):92-105. PubMed ID: 31206909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MicroRNA Dysregulation in Alzheimer's Disease.
    Putteeraj M; Fairuz YM; Teoh SL
    CNS Neurol Disord Drug Targets; 2017; 16(9):1000-1009. PubMed ID: 28782488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region: Implications in Alzheimer's disease.
    Long JM; Maloney B; Rogers JT; Lahiri DK
    Mol Psychiatry; 2019 Mar; 24(3):345-363. PubMed ID: 30470799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer's Disease.
    Sassi C; Ridge PG; Nalls MA; Gibbs R; Ding J; Lupton MK; Troakes C; Lunnon K; Al-Sarraj S; Brown KS; Medway C; Lord J; Turton J; ; Morgan K; Powell JF; Kauwe JS; Cruchaga C; Bras J; Goate AM; Singleton AB; Guerreiro R; Hardy J
    PLoS One; 2016; 11(6):e0150079. PubMed ID: 27249223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice.
    Hernandez-Rapp J; Rainone S; Goupil C; Dorval V; Smith PY; Saint-Pierre M; Vallée M; Planel E; Droit A; Calon F; Cicchetti F; Hébert SS
    Sci Rep; 2016 Aug; 6():30953. PubMed ID: 27484949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal microRNA deregulation in response to Alzheimer's disease amyloid-beta.
    Schonrock N; Ke YD; Humphreys D; Staufenbiel M; Ittner LM; Preiss T; Götz J
    PLoS One; 2010 Jun; 5(6):e11070. PubMed ID: 20552018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review.
    Millan MJ
    Prog Neurobiol; 2017 Sep; 156():1-68. PubMed ID: 28322921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β.
    Schonrock N; Humphreys DT; Preiss T; Götz J
    J Mol Neurosci; 2012 Feb; 46(2):324-35. PubMed ID: 21720722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of amyloid beta protein precursor processing as a means of retarding progression of Alzheimer's disease.
    Wagner SL; Munoz B
    J Clin Invest; 1999 Nov; 104(10):1329-32. PubMed ID: 10562291
    [No Abstract]   [Full Text] [Related]  

  • 38. [β-amyloid peptide deposition and expression of related miRNAs in the cerebellum of a mouse model of Alzheimer's disease].
    Deng Y; Hou D; Tian M; Li W; Feng X
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Mar; 34(3):323-8. PubMed ID: 24670442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology.
    Noh H; Park C; Park S; Lee YS; Cho SY; Seo H
    BMC Genomics; 2014 Aug; 15(1):644. PubMed ID: 25086961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MicroRNA-26b is upregulated in a double transgenic mouse model of Alzheimer's disease and promotes the expression of amyloid-β by targeting insulin-like growth factor 1.
    Liu H; Chu W; Gong L; Gao X; Wang W
    Mol Med Rep; 2016 Mar; 13(3):2809-14. PubMed ID: 26847596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.