These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22120159)

  • 1. Modulation of somatosensory processing in dual tasks: an event-related brain potential study.
    Kida T; Kaneda T; Nishihira Y
    Exp Brain Res; 2012 Feb; 216(4):575-84. PubMed ID: 22120159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resource allocation and somatosensory P300 amplitude during dual task: effects of tracking speed and predictability of tracking direction.
    Kida T; Nishihira Y; Hatta A; Wasaka T; Tazoe T; Sakajiri Y; Nakata H; Kaneda T; Kuroiwa K; Akiyama S; Sakamoto M; Kamijo K; Higashiura T
    Clin Neurophysiol; 2004 Nov; 115(11):2616-28. PubMed ID: 15465451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-task repetition alters event-related brain potentials and task performance.
    Kida T; Kaneda T; Nishihira Y
    Clin Neurophysiol; 2012 Jun; 123(6):1123-30. PubMed ID: 22030141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C; Staines WR
    Behav Brain Res; 2015 Mar; 281():267-75. PubMed ID: 25549856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of stimulus intensity and auditory white noise on human somatosensory cognitive processing: a study using event-related potentials.
    Mizukami H; Kakigi R; Nakata H
    Exp Brain Res; 2019 Feb; 237(2):521-530. PubMed ID: 30474688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossmodal influences on early somatosensory processing: interaction of vision, touch, and task-relevance.
    Dionne JK; Legon W; Staines WR
    Exp Brain Res; 2013 May; 226(4):503-12. PubMed ID: 23455852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive occupational finger use delays age effects in tactile perception-an ERP study.
    Reuter EM; Voelcker-Rehage C; Vieluf S; Winneke AH; Godde B
    Atten Percept Psychophys; 2014 May; 76(4):1160-75. PubMed ID: 24604541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The attentional-relevance and temporal dynamics of visual-tactile crossmodal interactions differentially influence early stages of somatosensory processing.
    Popovich C; Staines WR
    Brain Behav; 2014 Mar; 4(2):247-60. PubMed ID: 24683517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a go/nogo task on event-related potentials following somatosensory stimulation.
    Nakata H; Inui K; Nishihira Y; Hatta A; Sakamoto M; Kida T; Wasaka T; Kakigi R
    Clin Neurophysiol; 2004 Feb; 115(2):361-8. PubMed ID: 14744578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using somatosensory mismatch responses as a window into somatotopic processing of tactile stimulation.
    Shen G; Smyk NJ; Meltzoff AN; Marshall PJ
    Psychophysiology; 2018 May; 55(5):e13030. PubMed ID: 29139557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement.
    Kida T; Wasaka T; Nakata H; Kakigi R
    Exp Brain Res; 2006 Mar; 169(3):289-301. PubMed ID: 16307265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subjective rating of weak tactile stimuli is parametrically encoded in event-related potentials.
    Auksztulewicz R; Blankenburg F
    J Neurosci; 2013 Jul; 33(29):11878-87. PubMed ID: 23864677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient inhibition of the dorsolateral prefrontal cortex disrupts attention-based modulation of tactile stimuli at early stages of somatosensory processing.
    Bolton DA; Staines WR
    Neuropsychologia; 2011 Jun; 49(7):1928-37. PubMed ID: 21439987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regularity of approaching visual stimuli influences spatial expectations for subsequent somatosensory stimuli.
    Kimura T; Katayama J
    Exp Brain Res; 2017 Jun; 235(6):1657-1663. PubMed ID: 28271219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive enhancement of the somatosensory P100 and N140 in an active attention task using deviant alone condition.
    Kida T; Nishihira Y; Wasaka T; Nakata H; Sakamoto M
    Clin Neurophysiol; 2004 Apr; 115(4):871-9. PubMed ID: 15003768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term physical exercise and somatosensory event-related potentials.
    Iwadate M; Mori A; Ashizuka T; Takayose M; Ozawa T
    Exp Brain Res; 2005 Jan; 160(4):528-32. PubMed ID: 15586274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.
    Ku Y; Ohara S; Wang L; Lenz FA; Hsiao SS; Bodner M; Hong B; Zhou YD
    PLoS One; 2007 Aug; 2(8):e771. PubMed ID: 17712419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ERP evidence of attentional somatosensory processing and stimulus-response coupling under different hand and arm postures.
    Kida T; Kaneda T; Nishihira Y
    Front Hum Neurosci; 2023; 17():1252686. PubMed ID: 38021238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mental workload on involuntary attention: A somatosensory ERP study.
    Mun S; Whang M; Park S; Park MC
    Neuropsychologia; 2017 Nov; 106():7-20. PubMed ID: 28827155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the somatosensory N250 and P300 by the variation of reaction time.
    Kida T; Nishihira Y; Hatta A; Wasaka T; Nakata H; Sakamoto M; Nakajima T
    Eur J Appl Physiol; 2003 May; 89(3-4):326-30. PubMed ID: 12736841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.