BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22121055)

  • 1. Biochemical and mechanical extracellular matrix properties dictate mammary epithelial cell motility and assembly.
    Shebanova O; Hammer DA
    Biotechnol J; 2012 Mar; 7(3):397-408. PubMed ID: 22121055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion.
    Peyton SR; Putnam AJ
    J Cell Physiol; 2005 Jul; 204(1):198-209. PubMed ID: 15669099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of epithelial cell organization by tuning cell-substrate adhesion.
    Ravasio A; Le AP; Saw TB; Tarle V; Ong HT; Bertocchi C; Mège RM; Lim CT; Gov NS; Ladoux B
    Integr Biol (Camb); 2015 Oct; 7(10):1228-41. PubMed ID: 26402903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force localization modes in dynamic epithelial colonies.
    Schaumann EN; Staddon MF; Gardel ML; Banerjee S
    Mol Biol Cell; 2018 Nov; 29(23):2835-2847. PubMed ID: 30207837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells.
    Khatiwala CB; Peyton SR; Putnam AJ
    Am J Physiol Cell Physiol; 2006 Jun; 290(6):C1640-50. PubMed ID: 16407416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophils display biphasic relationship between migration and substrate stiffness.
    Stroka KM; Aranda-Espinoza H
    Cell Motil Cytoskeleton; 2009 Jun; 66(6):328-41. PubMed ID: 19373775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric fibronectin matrix mimetic as a functional growth- and migration-promoting adhesive substrate.
    Roy DC; Wilke-Mounts SJ; Hocking DC
    Biomaterials; 2011 Mar; 32(8):2077-87. PubMed ID: 21185596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix.
    Wozniak MA; Desai R; Solski PA; Der CJ; Keely PJ
    J Cell Biol; 2003 Nov; 163(3):583-95. PubMed ID: 14610060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibronectin fibrillogenesis facilitates mechano-dependent cell spreading, force generation, and nuclear size in human embryonic fibroblasts.
    Scott LE; Mair DB; Narang JD; Feleke K; Lemmon CA
    Integr Biol (Camb); 2015 Nov; 7(11):1454-65. PubMed ID: 26412391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The facile generation of two-dimensional stiffness maps in durotactic cell platforms through thickness projections of three-dimensional submerged topography.
    Kuo CH; Láng J; Láng O; Kőhidai L; Sivaniah E
    Methods Cell Biol; 2014; 121():49-60. PubMed ID: 24560502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microenvironmental Stiffness of 3D Polymeric Structures to Study Invasive Rates of Cancer Cells.
    Lemma ED; Spagnolo B; Rizzi F; Corvaglia S; Pisanello M; De Vittorio M; Pisanello F
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29106056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational model for cell migration in three-dimensional matrices.
    Zaman MH; Kamm RD; Matsudaira P; Lauffenburger DA
    Biophys J; 2005 Aug; 89(2):1389-97. PubMed ID: 15908579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells.
    Ulrich TA; de Juan Pardo EM; Kumar S
    Cancer Res; 2009 May; 69(10):4167-74. PubMed ID: 19435897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro.
    Vernon RB; Angello JC; Iruela-Arispe ML; Lane TF; Sage EH
    Lab Invest; 1992 May; 66(5):536-47. PubMed ID: 1374138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.
    Checa S; Rausch MK; Petersen A; Kuhl E; Duda GN
    Biomech Model Mechanobiol; 2015 Jan; 14(1):1-13. PubMed ID: 24718853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibroblasts Lead the Way: A Unified View of 3D Cell Motility.
    Petrie RJ; Yamada KM
    Trends Cell Biol; 2015 Nov; 25(11):666-674. PubMed ID: 26437597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Preparation of Photoactivatable Surfaces with Tuned Substrate Adhesiveness.
    Shimizu Y; Kamimura M; Yamamoto S; Abdellatef SA; Yamaguchi K; Nakanishi J
    Anal Sci; 2016; 32(11):1183-1188. PubMed ID: 27829623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying traction stresses in adherent cells.
    Kraning-Rush CM; Carey SP; Califano JP; Reinhart-King CA
    Methods Cell Biol; 2012; 110():139-78. PubMed ID: 22482948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage.
    Teichmann J; Morgenstern A; Seebach J; Schnittler HJ; Werner C; Pompe T
    Biomaterials; 2012 Mar; 33(7):1959-69. PubMed ID: 22154622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of mixed collagen-Matrigel matrices of increasing complexity recapitulates the biphasic role of cell adhesion in cancer cell migration: ECM sensing, remodeling and forces at the leading edge of cancer invasion.
    Anguiano M; Morales X; Castilla C; Pena AR; Ederra C; Martínez M; Ariz M; Esparza M; Amaveda H; Mora M; Movilla N; Aznar JMG; Cortés-Domínguez I; Ortiz-de-Solorzano C
    PLoS One; 2020; 15(1):e0220019. PubMed ID: 31945053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.