These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 22121160)

  • 21. An Automatic Quality Control Pipeline for High-Throughput Screening Hit Identification.
    Zhai Y; Chen K; Zhong Y; Zhou B; Ainscow E; Wu YT; Zhou Y
    J Biomol Screen; 2016 Sep; 21(8):832-41. PubMed ID: 27313114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments.
    Zhang XD; Ferrer M; Espeseth AS; Marine SD; Stec EM; Crackower MA; Holder DJ; Heyse JF; Strulovici B
    J Biomol Screen; 2007 Jun; 12(4):497-509. PubMed ID: 17435171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control-Plate Regression (CPR) Normalization for High-Throughput Screens with Many Active Features.
    Murie C; Barette C; Lafanechère L; Nadon R
    J Biomol Screen; 2014 Jun; 19(5):661-71. PubMed ID: 24352083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular phenotyping by RNAi.
    Fuchs F; Boutros M
    Brief Funct Genomic Proteomic; 2006 Mar; 5(1):52-6. PubMed ID: 16769679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional Genomics in Pharmaceutical Drug Discovery.
    Adams R; Steckel M; Nicke B
    Handb Exp Pharmacol; 2016; 232():25-41. PubMed ID: 26330261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide application of RNAi to the discovery of potential drug targets.
    Ito M; Kawano K; Miyagishi M; Taira K
    FEBS Lett; 2005 Oct; 579(26):5988-95. PubMed ID: 16153642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Application of RNAi library to oncology investigation].
    Weng DH; Wang SX; Ma D
    Ai Zheng; 2008 Nov; 27(11):1229-32. PubMed ID: 19000460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel specific edge effect correction method for RNA interference screenings.
    Carralot JP; Ogier A; Boese A; Genovesio A; Brodin P; Sommer P; Dorval T
    Bioinformatics; 2012 Jan; 28(2):261-8. PubMed ID: 22121160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions.
    Caraus I; Alsuwailem AA; Nadon R; Makarenkov V
    Brief Bioinform; 2015 Nov; 16(6):974-86. PubMed ID: 25750417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and validation of siRNAs and shRNAs.
    Tilesi F; Fradiani P; Socci V; Willems D; Ascenzioni F
    Curr Opin Mol Ther; 2009 Apr; 11(2):156-64. PubMed ID: 19330721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying HIV-1 host cell factors by genome-scale RNAi screening.
    Pache L; König R; Chanda SK
    Methods; 2011 Jan; 53(1):3-12. PubMed ID: 20654720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HIV-1-specific RNA interference.
    Boden D; Pusch O; Ramratnam B
    Curr Opin Mol Ther; 2004 Aug; 6(4):373-80. PubMed ID: 15468596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA interference as an antiviral approach: targeting HIV-1.
    Berkhout B
    Curr Opin Mol Ther; 2004 Apr; 6(2):141-5. PubMed ID: 15195925
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 36.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]     [New Search]
    of 2.