These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22121621)

  • 1. Quantum mechanical simulation of hole transport in p-type Si Schottky barrier MOSFETs.
    Choi W; Shin M
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5861-4. PubMed ID: 22121621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantum mechanical transport approach to simulation of quadruple gate silicon nanowire transistor.
    Karimi F; Fathipour M; Hosseini R
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10476-9. PubMed ID: 22408929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalability of Schottky barrier metal-oxide-semiconductor transistors.
    Jang M
    Nano Converg; 2016; 3(1):11. PubMed ID: 28191421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire.
    Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Enhancement of a S/D Tunneling Model in a 2D MS-EMC Nanodevice Simulator: NEGF Comparison and Impact of Effective Mass Variation.
    Medina-Bailon C; Carrillo-Nunez H; Lee J; Sampedro C; Padilla JL; Donetti L; Georgiev V; Gamiz F; Asenov A
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32079085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hole-effective masses in the transport calculation of Si nanowire pMOSFETs.
    Le AT; Shin M
    J Nanosci Nanotechnol; 2011 Jan; 11(1):322-5. PubMed ID: 21446448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability Predictions for the Next Technology Generations of
    Lee J; Badami O; Carrillo-Nuñez H; Berrada S; Medina-Bailon C; Dutta T; Adamu-Lema F; Georgiev VP; Asenov A
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30563045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A current-voltage model for Schottky-barrier graphene-based transistors.
    Jiménez D
    Nanotechnology; 2008 Aug; 19(34):345204. PubMed ID: 21730642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications.
    Nozaki D; Kunstmann J; Zörgiebel F; Weber WM; Mikolajick T; Cuniberti G
    Nanotechnology; 2011 Aug; 22(32):325703. PubMed ID: 21772070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic Transport Characteristics of P-Type Gate-All-Around Silicon Nanowire MOSFETs.
    Gu J; Zhang Q; Wu Z; Yao J; Zhang Z; Zhu X; Wang G; Li J; Zhang Y; Cai Y; Xu R; Xu G; Xu Q; Yin H; Luo J; Wang W; Ye T
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33530292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-band quantum transport simulation in the presence of hole-phonon interactions using a mode-space k·p approach.
    Carrillo-Nuñez H; Medina-Bailón C; Georgiev VP; Asenov A
    Nanotechnology; 2020 Oct; 32(2):020001. PubMed ID: 33055371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors.
    Ma RM; Peng RM; Wen XN; Dai L; Liu C; Sun T; Xu WJ; Qin GG
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6428-31. PubMed ID: 21137742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors.
    Razavieh A; Mohseni PK; Jung K; Mehrotra S; Das S; Suslov S; Li X; Klimeck G; Janes DB; Appenzeller J
    ACS Nano; 2014 Jun; 8(6):6281-7. PubMed ID: 24848303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts.
    Tang W; Dayeh SA; Picraux ST; Huang JY; Tu KN
    Nano Lett; 2012 Aug; 12(8):3979-85. PubMed ID: 22731955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT coupled with NEGF study of the electronic properties and ballistic transport performances of 2D SbSiTe
    Hu X; Qu H; Xu L; Liu W; Guo T; Cai B; Yu X; Zhu J; Zhang S
    Nanoscale; 2020 May; 12(18):9958-9963. PubMed ID: 32356547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependences of the electrical properties on the diameter and the doping concentration of the Si nanowire field effect transistors with a Schottky metal-semiconductor contact.
    You JH; Lee SH; You CH; Yu YS; Kim TW
    J Nanosci Nanotechnol; 2010 May; 10(5):3609-13. PubMed ID: 20359010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Transport in a Silicon Nanowire FET Transistor: Hot Electrons and Local Power Dissipation.
    Martinez A; Barker JR
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal/nanowire contacts, quantum confinement, and their roles in the generation of new, gigantic actions in nanowire transistors.
    Mohammad SN
    Nanotechnology; 2013 Nov; 24(45):455201. PubMed ID: 24129340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices.
    Chen D; Wei GW
    J Comput Phys; 2010 Jun; 229(12):4431-4460. PubMed ID: 20396650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.