These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22121631)

  • 41. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical/thermal behaviors of bimetallic (Ag-Cu, Ag-Sn) nanoparticles for printed electronics.
    Wang X; Huang F; Wang D; Li D; Li P; Muhammad J; Dong X; Zhang Z
    Nanotechnology; 2020 Mar; 31(13):135603. PubMed ID: 31816613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink.
    Kim NR; Lee YJ; Lee C; Koo J; Lee HM
    Nanotechnology; 2016 Aug; 27(34):345706. PubMed ID: 27454465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of coated-wire silver ion selective electrodes on paper using conductive films of silver nanoparticles.
    Janrungroatsakul W; Lertvachirapaiboon C; Ngeontae W; Aeungmaitrepirom W; Chailapakul O; Ekgasit S; Tuntulani T
    Analyst; 2013 Nov; 138(22):6786-92. PubMed ID: 24071789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.
    Ji H; Zhou J; Liang M; Lu H; Li M
    Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of sintering behavior of vapor forms of 1-octanethiol coated copper nanoparticles for application to ink-jet printing technology.
    Kwon J; Park S; Haque MM; Kim YS; Lee CS
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3434-7. PubMed ID: 22849140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of Ag on the Properties of Ca
    Sotelo A; Torres MA; Madre MA; Diez JC
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Parametric study on conductive patterns by low-temperature sintering of micron silver ink.
    Zhao M; Tang G; Yang S; Fu S
    RSC Adv; 2023 Mar; 13(13):8636-8645. PubMed ID: 36936824
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate.
    Lee YI; Kim S; Jung SB; Myung NV; Choa YH
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5908-13. PubMed ID: 23786607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of temperature on the electrical properties of inkjet-printed silver nanoparticle ink during electrical sintering.
    Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6174-8. PubMed ID: 24205623
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper conductive patterns through spray-pyrolysis of copper-diethanolamine complex solution.
    Chotipanich J; Abu Bakar SH; Arponwichanop A; Yonezawa T; Kheawhom S
    PLoS One; 2018; 13(7):e0200084. PubMed ID: 29969478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wearable Circuits Sintered at Room Temperature Directly on the Skin Surface for Health Monitoring.
    Zhang L; Ji H; Huang H; Yi N; Shi X; Xie S; Li Y; Ye Z; Feng P; Lin T; Liu X; Leng X; Li M; Zhang J; Ma X; He P; Zhao W; Cheng H
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45504-45515. PubMed ID: 32911929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrical and morphological properties of conducting layers formed from the silver-glass composite conducting powders prepared by spray pyrolysis.
    Jung DS; Koo HY; Kang YC
    J Colloid Interface Sci; 2010 Mar; 343(1):1-6. PubMed ID: 20036371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics.
    Hwang HJ; Chung WH; Kim HS
    Nanotechnology; 2012 Dec; 23(48):485205. PubMed ID: 23138346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.