These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22121636)

  • 1. Wettability control of a transparent substrate using ZnO nanorods.
    Choi JH; You X; Chang JH; Ju BK; Pak JJ
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5944-8. PubMed ID: 22121636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Transparent Superhydrophobic Surface from ZnO Nanorods.
    Kim HM; Lee CH; Kwon J; Kim J; Kim B
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1772-1778. PubMed ID: 33404446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SiO
    Li H; Zou X; Wei H; Li Q; Gao Q; Liu Q; Zhang J
    Front Chem; 2020; 8():101. PubMed ID: 32154217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.
    Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods.
    Myint MT; Hornyak GL; Dutta J
    J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
    Liu Y; Lin Z; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnO/CuO hetero-hierarchical nanotrees array: hydrothermal preparation and self-cleaning properties.
    Guo Z; Chen X; Li J; Liu JH; Huang XJ
    Langmuir; 2011 May; 27(10):6193-200. PubMed ID: 21491849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organophilicity of Graphene Oxide for Enhanced Wettability of ZnO Nanorods.
    Emani PS; Maddah HA; Rangoonwala A; Che S; Prajapati A; Singh MR; Gruen DM; Berry V; Behura SK
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39772-39780. PubMed ID: 32805940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties.
    Xiong J; Das SN; Shin B; Kar JP; Choi JH; Myoung JM
    J Colloid Interface Sci; 2010 Oct; 350(1):344-7. PubMed ID: 20637472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO Nanorod Array Modified PVDF Membrane with Superhydrophobic Surface for Vacuum Membrane Distillation Application.
    Wang M; Liu G; Yu H; Lee SH; Wang L; Zheng J; Wang T; Yun Y; Lee JK
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13452-13461. PubMed ID: 29616789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic surface based on a coral-like hierarchical structure of ZnO.
    Wu J; Xia J; Lei W; Wang B
    PLoS One; 2010 Dec; 5(12):e14475. PubMed ID: 21209931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic and ultraviolet-blocking cotton textiles.
    Wang L; Zhang X; Li B; Sun P; Yang J; Xu H; Liu Y
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1277-81. PubMed ID: 21438599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects.
    Yang P; Wang K; Liang Z; Mai W; Wang CX; Xie W; Liu P; Zhang L; Cai X; Tan S; Song J
    Nanoscale; 2012 Sep; 4(18):5755-60. PubMed ID: 22895660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion.
    Yao L; Zheng M; Li C; Ma L; Shen W
    Nanoscale Res Lett; 2012 Apr; 7(1):216. PubMed ID: 22500967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilic and Superhydrophilic Self-Cleaning Coatings by Morphologically Varying ZnO Microstructures for Photovoltaic and Glazing Applications.
    Nundy S; Ghosh A; Mallick TK
    ACS Omega; 2020 Jan; 5(2):1033-1039. PubMed ID: 31984259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.
    Myint MT; Kitsomboonloha R; Baruah S; Dutta J
    J Colloid Interface Sci; 2011 Feb; 354(2):810-5. PubMed ID: 21109250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature growth of multiple-stack high-density ZnO nanoflowers/nanorods on plastic substrates.
    Kim DY; Kim JY; Chang H; Kim MS; Leem JY; Ballato J; Kim SO
    Nanotechnology; 2012 Dec; 23(48):485606. PubMed ID: 23128124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnO nanoparticles coated and stearic acid modified superhydrophobic chitosan film for self-cleaning and oil-water separation.
    Yu M; Yang L; Yan L; Wang T; Wang Y; Qin Y; Xiong L; Shi R; Sun Q
    Int J Biol Macromol; 2023 Mar; 231():123293. PubMed ID: 36652982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photovoltaic performance of dye-sensitized solar cell low temperature growth of ZnO nanorods using chemical bath deposition.
    Lee JG; Choi YC; Lee DK; Ahn KS; Kim JH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3469-72. PubMed ID: 22849148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.
    Suresh Kumar P; Sundaramurthy J; Mangalaraj D; Nataraj D; Rajarathnam D; Srinivasan MP
    J Colloid Interface Sci; 2011 Nov; 363(1):51-8. PubMed ID: 21831394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.