BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22121672)

  • 1. Theoretical investigation of Ti-adsorbed graphene for hydrogen storage using the ab-initio method.
    Park HL; Yoo DS; Yi SC; Chung YC
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6131-5. PubMed ID: 22121672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal (Li, Al, Ca and Ti) absorbed graphene with defects for hydrogen storage: first-principles calculations.
    Park HL; Chung YC
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10624-8. PubMed ID: 22408961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage.
    Wang J; Chen Y; Yuan L; Zhang M; Zhang C
    Molecules; 2019 Jun; 24(13):. PubMed ID: 31252605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A First Principles study on Boron-doped Graphene decorated by Ni-Ti-Mg atoms for Enhanced Hydrogen Storage Performance.
    Nachimuthu S; Lai PJ; Leggesse EG; Jiang JC
    Sci Rep; 2015 Nov; 5():16797. PubMed ID: 26577659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain effects on hydrogen storage in Ti decorated pyridinic N-doped graphene.
    Kim D; Lee S; Jo S; Chung YC
    Phys Chem Chem Phys; 2013 Aug; 15(30):12757-61. PubMed ID: 23799404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the hydrogen storage performance of t-graphene-like two-dimensional boron nitride upon selected lithium decoration.
    El Kassaoui M; Lakhal M; Benyoussef A; El Kenz A; Loulidi M; Mounkachi O
    Phys Chem Chem Phys; 2022 Jun; 24(24):15048-15059. PubMed ID: 35695859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of position and number of boron atom substitution on hydrogen uptake capacity of Li-decorated pentalene.
    Tavhare P; Deshmukh A; Chaudhari A
    Phys Chem Chem Phys; 2016 Dec; 19(1):681-694. PubMed ID: 27918041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Hydrogen Adsorption on the Simultaneously Decorated Graphene Sheet with Titanium and Palladium Atoms.
    Tavakkoli Heravi MJ; Farhadian N
    Langmuir; 2024 Jul; 40(27):13879-13891. PubMed ID: 38922333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential hydrogen storage materials from metal decorated 2D-C
    Varunaa R; Ravindran P
    Phys Chem Chem Phys; 2019 Dec; 21(45):25311-25322. PubMed ID: 31701096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density Functional Theory Study of Hydrogen Adsorption in a Ti-Decorated Mg-Based Metal-Organic Framework-74.
    Suksaengrat P; Amornkitbamrung V; Srepusharawoot P; Ahuja R
    Chemphyschem; 2016 Mar; 17(6):879-84. PubMed ID: 26717417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ti
    Intayot R; Rungnim C; Namuangruk S; Yodsin N; Jungsuttiwong S
    Dalton Trans; 2021 Sep; 50(33):11398-11411. PubMed ID: 34292283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H2-Binding by Neutral and Multiply Charged Titaniums: Hydrogen Storage Capacity of Titanium Mono- and Dications.
    Lee HM; Kim DY; Pak C; Singh NJ; Kim KS
    J Chem Theory Comput; 2011 Apr; 7(4):969-78. PubMed ID: 26606346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of NH
    Liu N; Gao D; Wang D
    Chemphyschem; 2024 Mar; 25(6):e202300861. PubMed ID: 38288557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of unified impact of Ti adatom and N doping on hydrogen gas adsorption capabilities of defected graphene sheets.
    Luhadiya N; Choyal V; Kundalwal SI; Sahu SK
    J Mol Graph Model; 2023 Mar; 119():108399. PubMed ID: 36563644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen adsorption on boron doped graphene: an ab initio study.
    Miwa RH; Martins TB; Fazzio A
    Nanotechnology; 2008 Apr; 19(15):155708. PubMed ID: 21825632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene.
    Khosravi A; Fereidoon A; Ahangari MG; Ganji MD; Emami SN
    J Mol Model; 2014 May; 20(5):2230. PubMed ID: 24777315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen storage in bimetallic Ti-Al sub-nanoclusters supported on graphene.
    Ramos-Castillo CM; Reveles JU; Cifuentes-Quintal ME; Zope RR; de Coss R
    Phys Chem Chem Phys; 2017 Aug; 19(31):21174-21184. PubMed ID: 28752877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The performance of adsorption, dissociation and diffusion mechanism of hydrogen on the Ti-doped ZrCo(110) surface.
    Wang Q; Kong X; Han H; Sang G; Zhang G; Gao T
    Phys Chem Chem Phys; 2019 Jun; 21(23):12597-12605. PubMed ID: 31150026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.
    Chen Y; Wang J; Yuan L; Zhang M; Zhang C
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28767084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.
    Srinivasadesikan V; Raghunath P; Lin MC
    J Mol Model; 2015 Jun; 21(6):142. PubMed ID: 25966674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.