These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22121676)

  • 1. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.
    Park GC; Song YM; Ha JH; Lee YT
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6152-6. PubMed ID: 22121676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures.
    Song YM; Choi ES; Yu JS; Lee YT
    Opt Express; 2009 Nov; 17(23):20991-7. PubMed ID: 19997337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of highly transparent glasses with broadband antireflective subwavelength structures.
    Song YM; Choi HJ; Yu JS; Lee YT
    Opt Express; 2010 Jun; 18(12):13063-71. PubMed ID: 20588436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antireflective hydrophobic si subwavelength structures using thermally dewetted Ni/SiO2 nanomask patterns.
    Joo DH; Leem JW; Yu JS
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10130-5. PubMed ID: 22413355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light trapping enhancement induced by bimetallic non-alloyed nanoparticles on a disordered subwavelength flexible thin film crystalline silicon substrate using metal-assisted chemical etching.
    Lee SK; Tan CL; Lee YT
    Opt Lett; 2017 Feb; 42(3):431-434. PubMed ID: 28146494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching.
    Ye X; Jiang X; Huang J; Geng F; Sun L; Zu X; Wu W; Zheng W
    Sci Rep; 2015 Aug; 5():13023. PubMed ID: 26268896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disordered antireflective subwavelength structures using Ag nanoparticles on fused silica windows.
    Shang P; Xiong SM; Deng QL; Shi LF; Zhang M
    Appl Opt; 2014 Oct; 53(29):6789-96. PubMed ID: 25322384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Dec; 19(27):26308-17. PubMed ID: 22274215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antireflective disordered subwavelength structure on GaAs using spin-coated Ag ink mask.
    Yeo CI; Kwon JH; Jang SJ; Lee YT
    Opt Express; 2012 Aug; 20(17):19554-62. PubMed ID: 23038597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures.
    Tan CL; Jang SJ; Lee YT
    Opt Express; 2012 Jul; 20(16):17448-55. PubMed ID: 23038297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications.
    Choi ES; Song YM; Park GC; Lee YT
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1342-5. PubMed ID: 21456184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu(In,Ga)Se
    Jeong HJ; Kim YC; Kim ST; Choi MH; Song YH; Yun JH; Park MS; Jang JH
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32967186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns.
    Leem JW; Yeh Y; Yu JS
    Opt Express; 2012 Feb; 20(4):4056-66. PubMed ID: 22418164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica.
    Wu J; Ye X; Sun L; Huang J; Wen J; Geng F; Zeng Y; Li Q; Yi Z; Jiang X; Zhang K
    Opt Express; 2018 Jan; 26(2):1361-1374. PubMed ID: 29402011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma-Induced, Self-Masking, One-Step Approach to an Ultrabroadband Antireflective and Superhydrophilic Subwavelength Nanostructured Fused Silica Surface.
    Ye X; Shao T; Sun L; Wu J; Wang F; He J; Jiang X; Wu WD; Zheng W
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13851-13859. PubMed ID: 29617569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics.
    Leem JW; Yu JS
    Opt Express; 2012 Nov; 20(24):26160-6. PubMed ID: 23187471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films.
    Wang K; He J
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11189-11196. PubMed ID: 29578679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband terahertz antireflective microstructures on quartz crystal surface by CO
    Wang D; Li Y; Zhang C; Liao W; Li Z; Zhang Q; Xu Q
    Opt Express; 2019 Jun; 27(13):18351-18362. PubMed ID: 31252780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antireflective glass nanoholes on optical lenses.
    Lee Y; Bae SI; Eom J; Suh HC; Jeong KH
    Opt Express; 2018 May; 26(11):14786-14791. PubMed ID: 29877414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.