These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22121687)

  • 1. Formation of nanostructures in Ni-22Cr-11Fe-1X (X = Y2O3, TiO2) alloys by high-energy ball-milling.
    Park J; Jang J; Kim TK; Kim SJ; Ahn JH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6213-8. PubMed ID: 22121687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of nano-sized Y2O3 dispersoids in mechanically alloyed Ni-(Cr, Y2O3, Y) alloys during heat-treatments.
    Kim B; Jang J; Kim TK; Ahn JH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5510-3. PubMed ID: 22966600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and Mechanical Properties of Nanocrystalline Al-Zn-Mg-Cu Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Cheng J; Cai Q; Zhao B; Yang S; Chen F; Li B
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and Mechanical Properties of Y
    Wu Y; Huang Q; Zhang L; Jiang Y; Zhu G; Shen J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Milling-Assisted Spark Plasma Sintering of Fine-Grained W-Ni-Mn Alloy.
    Pan Y; Xiang D; Wang N; Li H; Fan Z
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30065176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Spark Plasma Sintering of Soft Magnetic Composite in a Fe₂O₃–Al System by Mechanical Alloying.
    Lee CH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2453-456. PubMed ID: 29648756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Ultra-Fine-Grained W-TiC Alloys by a Simple Ball-Milling and Hydrogen Reduction Method.
    Lang S; Sun N; Cao J; Yu W; Yang Z; Hou S
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Optimization of Mechanical Alloying Conditions of Powder for the Preparation of a Fe-10Al-4Cr-4Y
    Svoboda J; Gamanov Š; Bártková D; Luptáková N; Bořil P; Jarý M; Mašek B; Holzer J; Dymáček P
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substantial Improvement of High Temperature Strength of New-Generation Nano-Oxide-Strengthened Alloys by Addition of Metallic Yttrium.
    Svoboda J; Bořil P; Holzer J; Luptáková N; Jarý M; Mašek B; Dymáček P
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Deformation Behavior of Ti-SiC Composites Made by Mechanical Alloying and Spark Plasma Sintering.
    Garbiec D; Leshchynsky V; Colella A; Matteazzi P; Siwak P
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Phase Composition of a W-Ta-Mo-Nb-V-Cr-Zr-Ti Alloy Obtained by Ball Milling and Spark Plasma Sintering.
    Ditenberg IA; Smirnov IV; Korchagin MA; Grinyaev KV; Melnikov VV; Pinzhin YP; Gavrilov AI; Esikov MA; Mali VI; Dudina DV
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and Tribological Behavior of Mechanically Alloyed Ni-TiC Composites Processed via Spark Plasma Sintering.
    Walunj G; Bearden A; Patil A; Larimian T; Christudasjustus J; Gupta RK; Borkar T
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering.
    Stingaciu M; Topole M; McGuiness P; Christensen M
    Sci Rep; 2015 Sep; 5():14112. PubMed ID: 26369360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformations in oxides induced by high-energy ball-milling.
    Šepelák V; Bégin-Colin S; Le Caër G
    Dalton Trans; 2012 Oct; 41(39):11927-48. PubMed ID: 22875201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and microstructural characterizations of nanocrystalline hydroxyapatite synthesized by mechanical alloying.
    Lala S; Satpati B; Kar T; Pradhan SK
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2891-8. PubMed ID: 23623111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Spark Plasma Sintering of Magnetic alpha-Fe/MgO Nanocomposite by Mechanical Alloying.
    Lee CH
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1558-61. PubMed ID: 27433621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Cu Matrix Strengthened by TiH₂-C
    Thi N; Oanh H; Viet NH
    J Nanosci Nanotechnol; 2021 Apr; 21(4):2687-2691. PubMed ID: 33500094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Densification of Nano-Sized W Powders Prepared by Hydrogen Reduction of Ball-Milled WO₃ Powders.
    Han JY; Kang H; Jeong YK; Oh ST
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4521-4524. PubMed ID: 31968511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Temperature Oxidation Properties and Microstructural Evolution of Nanostructure Fe-Cr-Al ODS Alloys.
    Li Z; Chen L; Zhang H; Liu S
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33499227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanosized-Particle Dispersion-Strengthened Al Matrix Composites Fabricated by the Double Mechanical Alloying Process.
    Kim C
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2220-2222. PubMed ID: 29448749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.