BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 22121718)

  • 1. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds.
    Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(L-lactic acid)/hydroxyapatite nanocylinders as nanofibrous structure for bone tissue engineering scaffolds.
    Lee JB; Park HN; Ko WK; Bae MS; Heo DN; Yang DH; Kwon IK
    J Biomed Nanotechnol; 2013 Mar; 9(3):424-9. PubMed ID: 23620998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering.
    Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F
    J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of poly (L-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering.
    Shalumon KT; Deepthi S; Anupama MS; Nair SV; Jayakumar R; Chennazhi KP
    Int J Biol Macromol; 2015 Jan; 72():1048-55. PubMed ID: 25316418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications.
    Gungor-Ozkerim PS; Balkan T; Kose GT; Sarac AS; Kok FN
    J Biomed Mater Res A; 2014 Jun; 102(6):1897-908. PubMed ID: 23852885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.
    Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds.
    Guo R; Chen S; Xiao X
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1523-1541. PubMed ID: 31359828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering.
    Chen JP; Su CH
    Acta Biomater; 2011 Jan; 7(1):234-43. PubMed ID: 20728584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide.
    Yang DZ; Chen AZ; Wang SB; Li Y; Tang XL; Wu YJ
    Biomed Mater; 2015 Jun; 10(3):035015. PubMed ID: 26107415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering.
    Meng ZX; Li HF; Sun ZZ; Zheng W; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):699-706. PubMed ID: 25427476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses.
    Kim HW; Yu HS; Lee HH
    J Biomed Mater Res A; 2008 Oct; 87(1):25-32. PubMed ID: 18080298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber.
    Lou T; Wang X; Song G
    Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paraffin embedding allows effective analysis of proliferation, survival, and immunophenotyping of cells cultured on poly(l-lactic acid) electrospun nanofiber scaffolds.
    Foroni L; Dirani G; Gualandi C; Focarete ML; Pasquinelli G
    Tissue Eng Part C Methods; 2010 Aug; 16(4):751-60. PubMed ID: 19824801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition.
    Torricelli P; Gioffrè M; Fiorani A; Panzavolta S; Gualandi C; Fini M; Focarete ML; Bigi A
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():130-8. PubMed ID: 24433895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.