These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 221219)

  • 1. The 'enzyme-probe' method for characterizing metabolite pools. The use of NAD-glycohydrolase in human erythrocyte sonicate as a model system.
    Solti M; Friedrich P
    Eur J Biochem; 1979 Apr; 95(3):551-9. PubMed ID: 221219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measured and calculated NAD+-NADH ratios in human erythrocytes.
    Marshall WE; Omachi A
    Biochim Biophys Acta; 1974 Jun; 354(1):1-10. PubMed ID: 4367846
    [No Abstract]   [Full Text] [Related]  

  • 3. Specific interactions of 3-phosphoglyceroyl-glyceraldehyde-3-phosphate dehydrogenase with coenzymes.
    Seydoux FJ; Kelemen N; Kellershohn N; Roucous C
    Eur J Biochem; 1976 May; 64(2):481-9. PubMed ID: 179814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calf-spleen nicotinamide-adenine dinucleotide glycohydrolase. Properties of the active site.
    Schuber F; Pascal M; Travo P
    Eur J Biochem; 1978 Feb; 83(1):205-14. PubMed ID: 203460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of glyceraldehyde 3-phosphate dehydrogenase with the membrane of the intact human erythrocyte.
    Keokitichai S; Wrigglesworth JM
    Biochem J; 1980 Jun; 187(3):837-41. PubMed ID: 6821371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 1H n.m.r. study of the kinetic properties expressed by glyceraldehyde phosphate dehydrogenase in the intact human erythrocyte.
    Brindle KM; Campbell ID; Simpson RJ
    Biochem J; 1982 Dec; 208(3):583-92. PubMed ID: 7165719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical study of microsomes and isolated subcellular membranes from rat liver. IX. Nicotinamide adenine dinucleotide glycohydrolase: a plasma membrane enzyme prominently found in Kupffer cells.
    Amar-Costesec A; Prado-Figueroa M; Beaufay H; Nagelkerke JF; van Berkel TJ
    J Cell Biol; 1985 Jan; 100(1):189-97. PubMed ID: 2981231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism and interactions of NAD+ with glyceraldehyde-3-phosphate dehydrogenase: correlation of EPR data and enzymatic studies.
    Wilder RT; Venkataramu SD; Dalton LR; Birktoft JJ; Trommer WE; Park JH
    Biochim Biophys Acta; 1989 Jul; 997(1-2):65-77. PubMed ID: 2546610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic properties of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from the host fraction of soybean root nodules.
    Copeland L; Zammit A
    Arch Biochem Biophys; 1994 Jul; 312(1):107-13. PubMed ID: 8031116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity and noncooperativity in the binding of NAD analogues to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase.
    Eby D; Kirtly ME
    Biochemistry; 1976 May; 15(10):2168-71. PubMed ID: 179563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for nicotinamide adenine dinucleotide glycohydrolase in the control of glyceraldehyde-3-phosphate dehydrogenase activity.
    Green S; Dobrjansky A; Bodansky O
    Cancer Res; 1969 Aug; 29(8):1568-73. PubMed ID: 4308957
    [No Abstract]   [Full Text] [Related]  

  • 12. Applicability of the induced-fit model to glyceraldehyde-3-phosphate dehydrogenase from sturgeon muscle. Study of the binding of oxidized nicotinamide adenine dinucleotide and nicotinamide 8-bromoadenine dinucleotide.
    Branlant G; Eiler B; Biellmann JF; Lutz HP; Luisi PL
    Biochemistry; 1983 Sep; 22(19):4437-43. PubMed ID: 6626510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases.
    Kim H; Jacobson EL; Jacobson MK
    Science; 1993 Sep; 261(5126):1330-3. PubMed ID: 8395705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol.
    Gregus Z; Németi B
    Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of metabolite compartmentation in erythrocyte glycolysis.
    Friedrich P; Apró-Kovács VA; Solti M
    FEBS Lett; 1977 Dec; 84(1):183-6. PubMed ID: 590519
    [No Abstract]   [Full Text] [Related]  

  • 17. Reactions of D-glyceraldehyde 3-phosphate dehydrogenase facilitated by oxidized nicotinamide-adenine dinucleotide.
    Trentham DR
    Biochem J; 1971 Mar; 122(1):59-69. PubMed ID: 4330968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD glycohydrolase activities and ADP-ribose uptake in erythrocytes from normal subjects and cancer patients.
    Albeniz I; Demir O; Nurten R; Bermek E
    Biosci Rep; 2004 Feb; 24(1):41-53. PubMed ID: 15499831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Use of a fluorescent probe for the study of the active center of D-glyceraldehyde-3-phosphate dehydrogenase].
    Ivanov MV; Nagradova NK
    Biokhimiia; 1977 Feb; 42(2):211-22. PubMed ID: 192346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sequential nature of the negative cooperativity in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase.
    Henis YI; Levitzki A
    Eur J Biochem; 1980 Nov; 112(1):59-73. PubMed ID: 7449764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.