These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 22122057)
1. Using text-mining techniques in electronic patient records to identify ADRs from medicine use. Warrer P; Hansen EH; Juhl-Jensen L; Aagaard L Br J Clin Pharmacol; 2012 May; 73(5):674-84. PubMed ID: 22122057 [TBL] [Abstract][Full Text] [Related]
2. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions. Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491 [TBL] [Abstract][Full Text] [Related]
3. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer. Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013 [TBL] [Abstract][Full Text] [Related]
4. An innovative method to strengthen evidence for potential drug safety signals using Electronic Health Records. Abedian Kalkhoran H; Zwaveling J; van Hunsel F; Kant A J Med Syst; 2024 May; 48(1):51. PubMed ID: 38753223 [TBL] [Abstract][Full Text] [Related]
5. Dose-specific adverse drug reaction identification in electronic patient records: temporal data mining in an inpatient psychiatric population. Eriksson R; Werge T; Jensen LJ; Brunak S Drug Saf; 2014 Apr; 37(4):237-47. PubMed ID: 24634163 [TBL] [Abstract][Full Text] [Related]
6. Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges. Wong A; Plasek JM; Montecalvo SP; Zhou L Pharmacotherapy; 2018 Aug; 38(8):822-841. PubMed ID: 29884988 [TBL] [Abstract][Full Text] [Related]
7. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Sarker A; Gonzalez G J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103 [TBL] [Abstract][Full Text] [Related]
8. On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions. Oronoz M; Gojenola K; Pérez A; de Ilarraza AD; Casillas A J Biomed Inform; 2015 Aug; 56():318-32. PubMed ID: 26141794 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of patient reporting of adverse drug reactions to the UK 'Yellow Card Scheme': literature review, descriptive and qualitative analyses, and questionnaire surveys. Avery AJ; Anderson C; Bond CM; Fortnum H; Gifford A; Hannaford PC; Hazell L; Krska J; Lee AJ; McLernon DJ; Murphy E; Shakir S; Watson MC Health Technol Assess; 2011 May; 15(20):1-234, iii-iv. PubMed ID: 21545758 [TBL] [Abstract][Full Text] [Related]
10. Use of Text Searching for Trigger Words in Medical Records to Identify Adverse Drug Reactions within an Intensive Care Unit Discharge Summary. Kane-Gill SL; MacLasco AM; Saul MI; Politz Smith TR; Kloet MA; Kim C; Anthes AM; Smithburger PL; Seybert AL Appl Clin Inform; 2016 Jul; 7(3):660-71. PubMed ID: 27453336 [TBL] [Abstract][Full Text] [Related]
11. Normalizing Spontaneous Reports Into MedDRA: Some Experiments With MagiCoder. Combi C; Zorzi M; Pozzani G; Arzenton E; Moretti U IEEE J Biomed Health Inform; 2019 Jan; 23(1):95-102. PubMed ID: 30059326 [TBL] [Abstract][Full Text] [Related]
12. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
13. Identifying adverse drug reactions from free-text electronic hospital health record notes. Wasylewicz A; van de Burgt B; Weterings A; Jessurun N; Korsten E; Egberts T; Bouwman A; Kerskes M; Grouls R; van der Linden C Br J Clin Pharmacol; 2022 Mar; 88(3):1235-1245. PubMed ID: 34468999 [TBL] [Abstract][Full Text] [Related]
14. Automating Clinical Chart Review: An Open-Source Natural Language Processing Pipeline Developed on Free-Text Radiology Reports From Patients With Glioblastoma. Senders JT; Cho LD; Calvachi P; McNulty JJ; Ashby JL; Schulte IS; Almekkawi AK; Mehrtash A; Gormley WB; Smith TR; Broekman MLD; Arnaout O JCO Clin Cancer Inform; 2020 Jan; 4():25-34. PubMed ID: 31977252 [TBL] [Abstract][Full Text] [Related]
15. Identification of discrepancies between adverse drug reactions coded by medical records technicians and those reported by the pharmacovigilance team in pediatrics: An intervention to improve identification, reporting, and coding. Soyer J; Necsoiu D; Desjardins I; Lebel D; Bussières JF Arch Pediatr; 2019 Oct; 26(7):400-406. PubMed ID: 31611146 [TBL] [Abstract][Full Text] [Related]
16. Mining Real-World Big Data to Characterize Adverse Drug Reaction Quantitatively: Mixed Methods Study. Yue QX; Ding RF; Chen WH; Wu LY; Liu K; Ji ZL J Med Internet Res; 2024 May; 26():e48572. PubMed ID: 38700923 [TBL] [Abstract][Full Text] [Related]
17. A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis. Young IJB; Luz S; Lone N Int J Med Inform; 2019 Dec; 132():103971. PubMed ID: 31630063 [TBL] [Abstract][Full Text] [Related]
18. A Text Mining Protocol for Predicting Drug-Drug Interaction and Adverse Drug Reactions from PubMed Articles. Shukkoor MSA; Raja K; Baharuldin MTH Methods Mol Biol; 2022; 2496():237-258. PubMed ID: 35713868 [TBL] [Abstract][Full Text] [Related]
19. Mining heterogeneous networks with topological features constructed from patient-contributed content for pharmacovigilance. Yang CC; Yang H Artif Intell Med; 2018 Aug; 90():42-52. PubMed ID: 30093253 [TBL] [Abstract][Full Text] [Related]
20. Identifying and managing adverse drug reactions: Qualitative analysis of patient reports to the UK yellow card scheme. O' Donovan B; Rodgers RM; Cox AR; Krska J Br J Clin Pharmacol; 2022 Jul; 88(7):3434-3446. PubMed ID: 35128732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]