BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22122125)

  • 21. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability.
    Hsu LL; Champion HC; Campbell-Lee SA; Bivalacqua TJ; Manci EA; Diwan BA; Schimel DM; Cochard AE; Wang X; Schechter AN; Noguchi CT; Gladwin MT
    Blood; 2007 Apr; 109(7):3088-98. PubMed ID: 17158223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane bending and sphingomyelinase-associated, sulfatide-dependent hypoxic adhesion of sickle mature erythrocytes.
    Goreke U; Kucukal E; Wang F; An R; Arnold N; Quinn E; Yuan C; Bode A; Hill A; Man Y; Hambley BC; Schilz R; Ginwalla M; Little JA; Gurkan UA
    Blood Adv; 2023 May; 7(10):2094-2104. PubMed ID: 36652689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sickle cell disease vasculopathy: a state of nitric oxide resistance.
    Wood KC; Hsu LL; Gladwin MT
    Free Radic Biol Med; 2008 Apr; 44(8):1506-28. PubMed ID: 18261470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypercoagulability in sickle cell disease and beta-thalassemia.
    Singer ST; Ataga KI
    Curr Mol Med; 2008 Nov; 8(7):639-45. PubMed ID: 18991650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Abnormal modulation of cell protective systems in response to ischemic/reperfusion injury is important in the development of mouse sickle cell hepatopathy.
    Siciliano A; Malpeli G; Platt OS; Lebouef C; Janin A; Scarpa A; Olivieri O; Amato E; Corrocher R; Beuzard Y; De Franceschi L
    Haematologica; 2011 Jan; 96(1):24-32. PubMed ID: 20851863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of vasculopathy in sickle cell disease and thalassemia.
    Morris CR
    Hematology Am Soc Hematol Educ Program; 2008; ():177-85. PubMed ID: 19074078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation of lipid peroxidation and nitric oxide metabolites, trace elements, and antioxidant enzymes in patients with sickle cell disease.
    Antwi-Boasiako C; Dankwah GB; Aryee R; Hayfron-Benjamin C; Aboagye G; Campbell AD
    J Clin Lab Anal; 2020 Jul; 34(7):e23294. PubMed ID: 32170816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative process in erythrocytes of individuals with hemoglobin S.
    Chaves MA; Leonart MS; do Nascimento AJ
    Hematology; 2008 Jun; 13(3):187-92. PubMed ID: 18702879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox-dependent impairment of vascular function in sickle cell disease.
    Aslan M; Freeman BA
    Free Radic Biol Med; 2007 Dec; 43(11):1469-83. PubMed ID: 17964418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiovascular Sequelae of Sickle Cell Disease.
    Aujla A; Dutta D; Amar S; Frishman W; Lim SH
    Cardiol Rev; 2020; 28(1):10-13. PubMed ID: 31804288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kidney Disease among Patients with Sickle Cell Disease, Hemoglobin SS and SC.
    Drawz P; Ayyappan S; Nouraie M; Saraf S; Gordeuk V; Hostetter T; Gladwin MT; Little J
    Clin J Am Soc Nephrol; 2016 Feb; 11(2):207-15. PubMed ID: 26672090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sickling-suppressive effects of chrysin may be associated with sequestration of deoxy-haemoglobin, 2,3-bisphosphoglycerate mutase, alteration of redox homeostasis and functional chemistry of sickle erythrocytes.
    Muhammad A; Waziri AD; Forcados GE; Sanusi B; Sani H; Malami I; Abubakar IB; Muhammad A; Muhammad RA; Mohammed HA
    Hum Exp Toxicol; 2020 Apr; 39(4):537-546. PubMed ID: 31876182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice.
    Kaul DK; Liu XD; Chang HY; Nagel RL; Fabry ME
    J Clin Invest; 2004 Oct; 114(8):1136-45. PubMed ID: 15489961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epeleuton, a novel synthetic ω-3 fatty acid, reduces hypoxia/ reperfusion stress in a mouse model of sickle cell disease.
    Mattè A; Federti E; Recchiuti A; Hamza M; Ferri G; Riccardi V; Ceolan J; Passarini A; Mazzi F; Siciliano A; Bhatt DL; Coughlan D; Climax J; Gremese E; Brugnara C; De Franceschi L
    Haematologica; 2024 Jun; 109(6):1918-1932. PubMed ID: 38105727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress, antioxidant capacity, biomolecule damage, and inflammation symptoms of sickle cell disease in children.
    Biswal S; Rizwan H; Pal S; Sabnam S; Parida P; Pal A
    Hematology; 2019 Dec; 24(1):1-9. PubMed ID: 30010491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitric oxide transport on sickle cell hemoglobin: where does it bind?
    Gladwin MT; Ognibene FP; Shelhamer JH; Pease-Fye ME; Noguchi CT; Rodgers GP; Schechter AN
    Free Radic Res; 2001 Aug; 35(2):175-80. PubMed ID: 11697198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of NRF2 activation to mediate fetal hemoglobin induction and protection against oxidative stress in sickle cell disease.
    Zhu X; Oseghale AR; Nicole LH; Li B; Pace BS
    Exp Biol Med (Maywood); 2019 Feb; 244(2):171-182. PubMed ID: 30674214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can red blood cell function assays assess response to red cell-modifying therapies?
    White J; Lancelot M; Gao X; Tarasev M; Chakraborty S; Emanuele M; Hines PC
    Clin Hemorheol Microcirc; 2022; 80(2):127-138. PubMed ID: 33459699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sickle cell disease and nitric oxide: a paradigm shift?
    Mack AK; Kato GJ
    Int J Biochem Cell Biol; 2006; 38(8):1237-43. PubMed ID: 16517208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemoglobin s polymerization and red cell membrane changes.
    Kuypers FA
    Hematol Oncol Clin North Am; 2014 Apr; 28(2):155-79. PubMed ID: 24589260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.