These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22122125)

  • 61. A novel inflammatory role for platelets in sickle cell disease.
    Davila J; Manwani D; Vasovic L; Avanzi M; Uehlinger J; Ireland K; Mitchell WB
    Platelets; 2015; 26(8):726-9. PubMed ID: 25548984
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intravascular hemolysis and the pathophysiology of sickle cell disease.
    Kato GJ; Steinberg MH; Gladwin MT
    J Clin Invest; 2017 Mar; 127(3):750-760. PubMed ID: 28248201
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches.
    Steinberg MH
    ScientificWorldJournal; 2008 Dec; 8():1295-324. PubMed ID: 19112541
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease.
    Papageorgiou DP; Abidi SZ; Chang HY; Li X; Kato GJ; Karniadakis GE; Suresh S; Dao M
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9473-9478. PubMed ID: 30190429
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease.
    Kato GJ; McGowan V; Machado RF; Little JA; Taylor J; Morris CR; Nichols JS; Wang X; Poljakovic M; Morris SM; Gladwin MT
    Blood; 2006 Mar; 107(6):2279-85. PubMed ID: 16291595
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of living at moderate altitude on pulmonary vascular function and exercise capacity in mice with sickle cell anaemia.
    Ferguson SK; Redinius K; Yalamanoglu A; Harral JW; Hyen Baek J; Pak D; Loomis Z; Hassell D; Eigenberger P; Nozik-Grayck E; Nuss R; Hassell K; Stenmark KR; Buehler PW; Irwin DC
    J Physiol; 2019 Feb; 597(4):1073-1085. PubMed ID: 29931797
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Vascular complications of sickle cell disease.
    Usmani A; Machado RF
    Clin Hemorheol Microcirc; 2018; 68(2-3):205-221. PubMed ID: 29614633
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tucaresol increases oxygen affinity and reduces haemolysis in subjects with sickle cell anaemia.
    Arya R; Rolan PE; Wootton R; Posner J; Bellingham AJ
    Br J Haematol; 1996 Jun; 93(4):817-21. PubMed ID: 8703810
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An update on arginine in sickle cell disease.
    Benites BD; Olalla-Saad ST
    Expert Rev Hematol; 2019 Apr; 12(4):235-244. PubMed ID: 30855194
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preoperative blood transfusions for sickle cell disease.
    Estcourt LJ; Kimber C; Trivella M; Doree C; Hopewell S
    Cochrane Database Syst Rev; 2020 Jul; 7(7):CD003149. PubMed ID: 32614473
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Emerging functional microfluidic assays for the study of thromboinflammation in sickle cell disease.
    An R; Gurkan UA
    Curr Opin Hematol; 2022 Nov; 29(6):327-334. PubMed ID: 35916533
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Novel marker for the detection of sickle cell nephropathy: soluble FMS-like tyrosine kinase-1 (sFLT-1).
    Youssry I; Makar S; Fawzy R; Wilson M; AbdAllah G; Fathy E; Sawires H
    Pediatr Nephrol; 2015 Dec; 30(12):2163-8. PubMed ID: 26238275
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reconstructing sickle cell disease: a data-based analysis of the "hyperhemolysis paradigm" for pulmonary hypertension from the perspective of evidence-based medicine.
    Hebbel RP
    Am J Hematol; 2011 Feb; 86(2):123-54. PubMed ID: 21264896
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sickle cell anemia and vascular dysfunction: the nitric oxide connection.
    Akinsheye I; Klings ES
    J Cell Physiol; 2010 Sep; 224(3):620-5. PubMed ID: 20578237
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation.
    Keleku-Lukwete N; Suzuki M; Otsuki A; Tsuchida K; Katayama S; Hayashi M; Naganuma E; Moriguchi T; Tanabe O; Engel JD; Imaizumi M; Yamamoto M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12169-74. PubMed ID: 26371321
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease.
    George A; Pushkaran S; Konstantinidis DG; Koochaki S; Malik P; Mohandas N; Zheng Y; Joiner CH; Kalfa TA
    Blood; 2013 Mar; 121(11):2099-107. PubMed ID: 23349388
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Arginine therapy of transgenic-knockout sickle mice improves microvascular function by reducing non-nitric oxide vasodilators, hemolysis, and oxidative stress.
    Kaul DK; Zhang X; Dasgupta T; Fabry ME
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H39-47. PubMed ID: 18456737
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sickle cell disease at the dawn of the molecular era.
    Abboud MR; Musallam KM
    Hemoglobin; 2009; 33 Suppl 1():S93-S106. PubMed ID: 20001639
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inflammatory and oxidative stress phenotypes in transgenic sickle cell mice.
    Charrin E; Ofori-Acquah SF; Nader E; Skinner S; Connes P; Pialoux V; Joly P; Martin C
    Blood Cells Mol Dis; 2016 Nov; 62():13-21. PubMed ID: 27835777
    [TBL] [Abstract][Full Text] [Related]  

  • 80. N-acetylcysteine reduces oxidative stress in sickle cell patients.
    Nur E; Brandjes DP; Teerlink T; Otten HM; Oude Elferink RP; Muskiet F; Evers LM; ten Cate H; Biemond BJ; Duits AJ; Schnog JJ;
    Ann Hematol; 2012 Jul; 91(7):1097-105. PubMed ID: 22318468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.